import numpy as np def tanh(x): #双曲函数 return np.tanh(x) def tanh_deriv(x):#更新权重时,需要用到双曲函数的倒数 return 1.0 - np.tanh(x)*np.tanh(x) def logistic(x):#构建逻辑函数 return 1/(1 + np.exp(-x)) def logistic_derivatic(x): #逻辑函数的倒数 return logistic(x)*(1 - logistic(x)) class NeuralNetwork: def __init__(self,layer,activation='tanh'): ''' :param layer:A list containing the number of unit in each layer. Should be at least two values.每层包含的神经元数目 :param activation: the activation function to be used.Can be "logistic" or "tanh" ''' if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivatic elif activation == 'tanh': self.activation = tanh self.activation_deriv = tanh_deriv self.weights = [] for i in range(1,len(layer) - 1):#权重的设置 self.weights.append((2*np.random.random((layer[i - 1] + 1,layer[i] + 1))-1)*0.25) self.weights.append((2*np.random.random((layer[i] + 1,layer[i+1]))-1)*0.25) '''训练神经网络,通过传入的数据,不断更新权重weights''' def fit(self,X,y,learning_rate=0.2,epochs=10000): ''' :param X: 数据集 :param y: 数据输出结果,分类标记 :param learning_rate: 学习率 :param epochs: 随机抽取的数据的训练次数 :return: ''' X = np.atleast_2d(X) #转化X为np数据类型,试数据类型至少是两维的 temp = np.ones([X.shape[0],X.shape[1]+1]) temp[:,0:-1] = X X = temp y = np.array(y) for k in range(epochs): i = np.random.randint(X.shape[0]) #随机抽取的行 a = [X[i]] for I in range(len(self.weights)):#完成正向所有的更新 a.append(self.activation(np.dot(a[I],self.weights[I])))#dot():对应位相乘后相加 error = y[i] - a[-1] deltas = [error * self.activation_deriv(a[-1])]#*self.activation_deriv(a[I])#输出层误差 # 反向更新 for I in range(len(a) -2,0,-1): deltas.append(deltas[-1].dot(self.weights[I].T)*self.activation_deriv(a[I])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate*layer.T.dot(delta) def predict(self,x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:-1] = x a = temp for I in range(0,len(self.weights)): a = self.activation(np.dot(a,self.weights[I])) return a #只需要保存最后的值,就是预测出来的值 nn = NeuralNetwork([2,2,1], 'tanh') X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([0, 1, 1, 0]) nn.fit(X, y) for i in [[0, 0], [0, 1], [1, 0], [1,1]]: print(i, nn.predict(i))