zoukankan      html  css  js  c++  java
  • 一个简单的神经网络

    import numpy as np
    
    def tanh(x):  #双曲函数
        return np.tanh(x)
    
    def tanh_deriv(x):#更新权重时,需要用到双曲函数的倒数
        return 1.0 - np.tanh(x)*np.tanh(x)
    
    def logistic(x):#构建逻辑函数
        return 1/(1 + np.exp(-x))
    
    def logistic_derivatic(x):  #逻辑函数的倒数
        return logistic(x)*(1 - logistic(x))
    
    class NeuralNetwork:
        def __init__(self,layer,activation='tanh'):
            '''
            :param layer:A list containing the number of unit in each layer.
            Should be at least two values.每层包含的神经元数目
            :param activation: the activation function to be used.Can be
            "logistic" or "tanh"
            '''
            if activation == 'logistic':
                self.activation = logistic
                self.activation_deriv = logistic_derivatic
            elif activation == 'tanh':
                self.activation = tanh
                self.activation_deriv = tanh_deriv
    
            self.weights = []
            for i in range(1,len(layer) - 1):#权重的设置
                self.weights.append((2*np.random.random((layer[i - 1] + 1,layer[i] + 1))-1)*0.25)
                self.weights.append((2*np.random.random((layer[i] + 1,layer[i+1]))-1)*0.25)
        '''训练神经网络,通过传入的数据,不断更新权重weights'''
        def fit(self,X,y,learning_rate=0.2,epochs=10000):
            '''
            :param X: 数据集
            :param y: 数据输出结果,分类标记
            :param learning_rate: 学习率
            :param epochs: 随机抽取的数据的训练次数
            :return:
            '''
            X = np.atleast_2d(X) #转化X为np数据类型,试数据类型至少是两维的
            temp = np.ones([X.shape[0],X.shape[1]+1])
            temp[:,0:-1] = X
            X = temp
            y = np.array(y)
    
            for k in range(epochs):
                i = np.random.randint(X.shape[0])  #随机抽取的行
                a = [X[i]]
    
                for I in range(len(self.weights)):#完成正向所有的更新
                    a.append(self.activation(np.dot(a[I],self.weights[I])))#dot():对应位相乘后相加
                error = y[i] - a[-1]
                deltas = [error * self.activation_deriv(a[-1])]#*self.activation_deriv(a[I])#输出层误差
                # 反向更新
                for I in range(len(a) -2,0,-1):
                    deltas.append(deltas[-1].dot(self.weights[I].T)*self.activation_deriv(a[I]))
                deltas.reverse()
                for i in range(len(self.weights)):
                    layer = np.atleast_2d(a[i])
                    delta = np.atleast_2d(deltas[i])
                    self.weights[i] += learning_rate*layer.T.dot(delta)
    
        def predict(self,x):
            x = np.array(x)
            temp = np.ones(x.shape[0] + 1)
            temp[0:-1] = x
            a = temp
            for I in range(0,len(self.weights)):
                a = self.activation(np.dot(a,self.weights[I]))
            return a  #只需要保存最后的值,就是预测出来的值
    nn = NeuralNetwork([2,2,1], 'tanh')
    X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
    y = np.array([0, 1, 1, 0])
    nn.fit(X, y)
    for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
        print(i, nn.predict(i))
  • 相关阅读:
    不用循如何计算数组累加和
    mysql通过binlog恢复删除数据
    windows下打开binlog
    mysql的binlog
    枚举实现线程池单例
    AtomicInteger的CAS算法浅析
    不用循环如何计算1累加到100
    MongoDB查询报错:class com.mongodb.MongoSecurityException: Exception authenticating MongoCredential
    Senparc.Weixin微信开发(3) 自定义菜单与获取用户组
    Senparc.Weixin微信开发(2) 消息机制和上下文(Session)
  • 原文地址:https://www.cnblogs.com/ilovecpp/p/12715422.html
Copyright © 2011-2022 走看看