zoukankan      html  css  js  c++  java
  • [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    1.1. Vectors and Linear Combinations向量和线性组合

    emmm,想写细一点,发现下面的概括很准确了,没必要

    REVIEW OF THE KEY IDEAS

    1. A vector v in two-dimensional space has two components v1 and v2.(二维空间中的向量v,有2个分量v1和v2)

    2. $v + w = ( v1 + w1, v2 + w2) $and (cv = ( cv1, cv2)) are found a component at a time.(向量的加法和数乘,每次计算出一个分量)

    3. A linear combination of three vectors u and v and w is cu+ dv + ew.(向量的线性组合)

    4. Take all linear combinations of u, or u and v, or u, v, w. In three dimensions,

      those combinations typically fill a line, then a plane, then the whole space (R^3) .(在三维的情况下,u、u和v、u,v和w的全部线性组合,分别能够填满一条线、一个平面和一个三维空间)

    1.2 Lengths and Dot Products向量长度和点积

    emmm,想写细一点,发现下面的概括很准确了,没必要

    REVIEW OF THE KEY IDEAS

    1. The dot product (v • w) multiplies each component (v_i) by (w_i) and adds all (v_iw_i). (2个向量的点积 = 对应分量乘积之和)

    2. The length (||v||) is the square root of (v · v). Then (u = v / ||v||) is a unit vector : length 1.(向量长度是向量自身点积的算术平方根,单元向量的长度是1)

    3. The dot product is (v · w) = 0 when vectors (v) and (w) are perpendicular.(2个向量互相垂直时,点积为0)

    4. The cosine of θ ( the angle between any nonzero v and w) never exceeds 1(任意2个非0向量夹角的余弦值都不超过1):

      Cosine (cosθ = frac{v · w}{||v||||w||}), Schwarz inequality (|v·w|≤||v||||w||)

    1.3 Matrices矩阵

    矩阵只是一种表示方式,一种形式,重要的是:矩阵中元素的解释方式、矩阵间操作的含义,矩阵和向量间操作的含义。

    某种意义上来说,可以理解为:解线性方程组的时候,嫌麻烦,想少写点字。。。因此简化成了矩阵形式。。。

    一些和矩阵密切相关的概念(简单知道就行,公开课也没在第一章讲这些,而是在后面的章节细说):

    • Linear Equations线性方程组
    • The Inverse Matrix逆矩阵
    • Cyclic Differences循环差
    • Independence and Dependence线性无关与线性相关

    REVIEW OF THE KEY IDEAS

    1. Matrix times vector: A(x) = combination of the columns of A(矩阵 × 向量 = 矩阵中列向量的线性组合)

    2. The solution to A(x) = b is (x) = (A^{-1}b), when A is an invertible matrix.(如果A是可逆矩阵,那么Ax=b方程的解是:x=(A^{-1}b)

    3. The cyclic matrix C has no inverse. Its three columns lie in the same plane.(循环矩阵C没有逆矩阵,它的3个列向量在同一个平面上)

      Those dependent columns add to the zero vector. Cx = 0 has many solutions.(线性相关的列向量和为0向量时,有非0解)

    4. This section is looking ahead to key ideas, not fully explained yet.(1.3这个小节有点超前了。os:确实,很多概念在公开课上都是后面会详细讲的,这部分目前只需要简单知道就行,讲太细会丧失学习兴趣的)

    不准不开心。
  • 相关阅读:
    如何将网格式报表打印成其它样式
    拥有与实力不相称的脾气是种灾难——北漂18年(23)
    8.8.1 Optimizing Queries with EXPLAIN
    mysql 没有rowid 怎么实现根据rowid回表呢?
    secondary index
    8.5.5 Bulk Data Loading for InnoDB Tables 批量数据加载
    mysql 中key 指的是索引
    8.5.4 Optimizing InnoDB Redo Logging 优化InnoDB Redo 日志
    8.5.3 Optimizing InnoDB Read-Only Transactions 优化InnoDB 只读事务
    8.5.1 Optimizing Storage Layout for InnoDB Tables InnoDB表的存储布局优化
  • 原文地址:https://www.cnblogs.com/iltonmi/p/14394661.html
Copyright © 2011-2022 走看看