zoukankan      html  css  js  c++  java
  • YTU 2402: Common Subsequence

    2402: Common Subsequence

    时间限制: 1 Sec  内存限制: 32 MB
    提交: 63  解决: 33

    题目描述

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 


    输入

    abcfbc abfcab
    programming contest 
    abcd mnp

    输出

    4
    2
    0

    样例输入

    abcfbc abfcab
    programming contest 
    abcd mnp
    
    

    样例输出

    4
    2
    0
    

    迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方……

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    char s1[1000],s2[1000];
    int dp[1000][1000];
    int len1,len2;
    void LCS()
    {
        int i,j;
        memset(dp,0,sizeof(dp));
        for(i = 1; i<=len1; i++)
        {
            for(j = 1; j<=len2; j++)
            {
                if(s1[i-1] == s2[j-1])
                    dp[i][j] = dp[i-1][j-1]+1;
                else
                    dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
            }
        }
    }
    int main()
    {
        while(~scanf("%s%s",s1,s2))
        {
            len1 = strlen(s1);
            len2 = strlen(s2);
            LCS();
            printf("%d
    ",dp[len1][len2]);
        }
        return 0;
    }
    

  • 相关阅读:
    043_MySQL 索引原理 与 慢查询优化
    042_MySQL 之【视图】【触发器】【存储过程】【函数】【事物】【数据库锁】【数据库备份】
    041_SQL逻辑查询语句执行顺序
    039_MySQL 数据操作
    040_数据库设计三范式
    039_MySQL_多表查询
    039_MySQL_单表查询
    038_MySQL 表的操作
    MySQL 存储引擎
    037_MySQL操作
  • 原文地址:https://www.cnblogs.com/im0qianqian/p/5989467.html
Copyright © 2011-2022 走看看