zoukankan      html  css  js  c++  java
  • 计算机学院大学生程序设计竞赛(2015’12)Polygon

    Polygon

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 195    Accepted Submission(s): 41


    Problem Description
    Give you a simple polygon and a line, and your task is to calculate the length of the line which is covered by the polygon.
     

    Input
    There are several test cases.
    Each test case starts with one non-negative integer n (3 <= n <= 1000) giving the number of the vertices of the polygon. Then following n lines, each line contains two real numbers standing for the x and y coordinates of a vertex. The vertices are given either in clockwise or counterclockwise order. Then four real numbers (sx, sy, tx, ty), standing for the coordinates of the two points of the line. 
    All real numbers are between -100000 and 100000.
     

    Output
    For each case print the total length of the line that covered by the polygon, with 3 digits after the decimal point.
     

    Sample Input
    4 0 0 0 1 1 1 1 0 0 0 1 1 4 0 0 0 1 1 1 1 0 0 0 1 0 9 0 0 0 2 1 1 2 2 3 1 4 2 5 1 6 2 6 0 0 1 6 1
     

    Sample Output
    1.414 1.000 6.000
     


    总是望着曾经的空间发呆,那些说好不分开的朋友不在了,转身,陌路。 熟悉的,安静了, 安静的,离开了, 离开的,陌生了, 陌生的,消失了, 消失的,陌路了。快哭了


    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    struct Point
    {
        double x;
        double y;
    } p[1001], px[10001];
    int n;
    double eps=1e-8;
    int cmp(Point a, Point b)
    {
        if(abs(a.x-b.x)<eps)
            return a.y<b.y;
        return a.x<b.x;
    }
    double dist(Point a,Point b)
    {
        return sqrt((a.x - b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    }
    double direction(Point pi,Point pj,Point pk)
    {
        return (pk.x-pi.x)*(pj.y-pi.y)-(pj.x-pi.x)*(pk.y-pi.y);
    }
    bool on_segment(Point pi,Point pj,Point pk)
    {
        if(direction(pi, pj, pk)==0)
        {
            if(pk.x>=min(pi.x,pj.x)&&pk.x<=max(pi.x,pj.x)&&pk.y>=min(pi.y,pj.y)&&pk.y<=max(pi.y,pj.y))
                return true;
        }
        return false;
    }
    bool segments_intersect(Point p1,Point p2,Point p3,Point p4)
    {
        double d1=direction(p3,p4,p1);
        double d2=direction(p3,p4,p2);
        double d3=direction(p1,p2,p3);
        double d4=direction(p1,p2,p4);
        if(d1*d2<0&&d3*d4<0)
            return true;
        else if(d1==0&&on_segment(p3,p4,p1))
            return true;
        else if(d2==0&&on_segment(p3,p4,p2))
            return true;
        else if(d3==0&&on_segment(p1,p2,p3))
            return true;
        else if(d4==0&&on_segment(p1,p2,p4))
            return true;
        return false;
    }
    Point intersection(Point a1, Point a2, Point b1, Point b2)
    {
        Point ret = a1;
        double t = ((a1.x - b1.x) * (b1.y - b2.y) - (a1.y - b1.y) * (b1.x - b2.x))
                   / ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x));
        ret.x += (a2.x - a1.x) * t;
        ret.y += (a2.y - a1.y) * t;
        return ret;
    }
    int InPolygon(Point a)
    {
        int i;
        Point b,c,d;
        b.y=a.y;
        b.x=1e15;
        int count=0;
        for(i=0; i<n; i++)
        {
            c = p[i];
            d = p[i + 1];
            if(on_segment(c,d,a))
                return 1;
            if(abs(c.y-d.y)<eps)
                continue;
            if(on_segment(a,b,c))
            {
                if(c.y>d.y)
                    count++;
            }
            else if(on_segment(a,b,d))
            {
                if(d.y>c.y)
                    count++;
            }
            else if(segments_intersect(a,b,c,d))
                count++;
        }
        return count%2;
    }
    bool Intersect(Point s,Point e,Point a,Point b)
    {
        return direction(e,a,s)*direction(e,b,s)<=0;
    }
    double calculate(Point s,Point e)
    {
        int i,k=0;
        double sum;
        Point a,b,temp;
        for(i=0; i<n; i++)
        {
            a=p[i];
            b=p[i+1];
            if(abs(direction(e,a,s))<eps&&abs(direction(e,b,s))<eps)
            {
                px[k++]=a;
                px[k++]=b;
            }
            else if(Intersect(s,e,a,b))
            {
                px[k++]=intersection(s,e,a,b);
            }
        }
        if(k==0)
            return 0.0;
        sort(px,px+k,cmp);
        px[k]=px[0];
        sum=0;
        for(i=0; i<k-1; i++)
        {
            a=px[i];
            b=px[i+1];
            temp.x=(a.x+b.x)/2.0;
            temp.y=(a.y+b.y)/2.0;
            if(InPolygon(temp))
                sum+=dist(a,b);
        }
        return sum;
    }
    int main()
    {
        int i;
        double sum;
        Point s,e;
        while(~scanf("%d",&n)&&n)
        {
            for(i=0; i<n; i++)
                scanf("%lf%lf",&p[i].x,&p[i].y);
            p[n]=p[0];
            scanf("%lf%lf%lf%lf",&s.x,&s.y,&e.x,&e.y);
            sum=calculate(s,e);
            printf("%.3lf
    ",sum);
        }
        return 0;
    }
    

    @执念  "@☆但求“❤”安★ 下次我们做的一定会更好。。。。吐舌头

    为什么这次的题目是英文的。。。。QAQ...哭

    ------------------- 这是千千的个人网站哦! https://www.dreamwings.cn -------------------
  • 相关阅读:
    CSS BEM 命名规范简介
    React 端的编程范式
    在React应用程序中用RegEx测试密码强度
    React 中获取数据的 3 种方法及它们的优缺点
    vue props传值常见问题
    如何理解vue中的v-model?
    利用jQuery not()方法选取除某个元素外的所有元素
    初识Nest.js
    react-绑定this并传参的三种方式
    Angular怎么防御xss攻击?
  • 原文地址:https://www.cnblogs.com/im0qianqian/p/5989700.html
Copyright © 2011-2022 走看看