zoukankan      html  css  js  c++  java
  • 594. Longest Harmonious Subsequence强制差距为1的最长连续

    [抄题]:

    We define a harmonious array is an array where the difference between its maximum value and its minimum value is exactly 1.

    Now, given an integer array, you need to find the length of its longest harmonious subsequence among all its possible subsequences.

    Example 1:

    Input: [1,3,2,2,5,2,3,7]
    Output: 5
    Explanation: The longest harmonious subsequence is [3,2,2,2,3].

     [暴力解法]:

    时间分析:

    空间分析:

     [优化后]:

    时间分析:

    空间分析:

    [奇葩输出条件]:

    [奇葩corner case]:

    [思维问题]:

    [一句话思路]:

    max1 + max2 最大

    [输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

    [画图]:

    [一刷]:

    差值必须是1 是0不行。所以[11111]输出为0。

    [二刷]:

    [三刷]:

    [四刷]:

    [五刷]:

      [五分钟肉眼debug的结果]:

    [总结]:

    熟悉hashmap的一些不常用方法,剩下就是语言表达了

    [复杂度]:Time complexity: O(n) Space complexity: O(n)

    [英文数据结构或算法,为什么不用别的数据结构或算法]:

    占空间但是好用,没别的办法了那就占吧

    [关键模板化代码]:

    [其他解法]:

    [Follow Up]:

    [LC给出的题目变变变]:

     [代码风格] :

    class Solution {
        public int findLHS(int[] nums) {
            //cc
            if (nums == null || nums.length == 0) {
                return 0;
            }
            
            //ini: put into hashmap
            Map<Integer,Integer> map = new HashMap<>();
            for (int num : nums) {
                map.put(num, map.getOrDefault(num, 0) + 1);
            }
            int max = 0;
            
            //for loop, getmax
            for (int key : map.keySet()) {
                if (map.containsKey(key + 1)) {
                    max = Math.max(max, map.get(key) + map.get(key + 1));
                }
            }
            
            //return max
            return max;
        }
    }
    View Code
  • 相关阅读:
    python 协程之Greenlet
    python 协程
    python 多进程通信之Manger
    python 多线程通信之Queue
    python 多进程
    python threading之queue
    python threading之同步条件(Event)
    python threading之条件变量同步(condition)
    python之字符串常用方法
    python之字典操作
  • 原文地址:https://www.cnblogs.com/immiao0319/p/8950203.html
Copyright © 2011-2022 走看看