[抄题]:
Given an integer array nums
, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
Your input
[2,3,-2,4]
Your answer
24
Expected answer
6
[奇葩corner case]:
[思维问题]:
[英文数据结构或算法,为什么不用别的数据结构或算法]:
记忆化搜索的dp,划分型 kandane
[一句话思路]:
max = Math.max(max, max * nums[i]);是记忆化搜索,能保证全局最优解24;
maxhere = Math.max(Math.max(maxherepre * A[i], minherepre * A[i]), A[i]);
保证二者之间相对较大,只能保证负号之前的局部最优解6 maxherepre = maxhere;
minhere用的是之前存好的maxherepre,不是改变后的maxhere。所以要提前存。
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
minhere用的是之前存好的maxherepre,不是改变后的maxhere。所以要
提前
存。
[复杂度]:Time complexity: O(n) Space complexity: O(1)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
Local optimal solution
class Solution { public int maxProduct(int[] nums) { //cc if (nums == null || nums.length == 0) return 0; //ini: 5 variables int maxHere = nums[0]; int minHere = nums[0]; int maxHerePre = nums[0]; int minHerePre = nums[0]; int result = nums[0]; //calculate for (int i = 1; i < nums.length; i++) { maxHere = Math.max(Math.max(maxHerePre * nums[i], minHerePre * nums[i]), nums[i]); minHere = Math.min(Math.min(maxHerePre * nums[i], minHerePre * nums[i]), nums[i]); maxHerePre = maxHere; minHerePre = minHere; result = Math.max(result, maxHere); } //return return result; } }