def KNN_classify(k, X_train, y_train, x): assert 1 <= k <= X_train.shape[0], "k must be valid" assert X_train.shape[0] == y_train.shape[0], "the size of X_train must equal to the size of y_train" assert X_train.shape[1] == x.shape[0], "the feature number of x must be equal to X_train" # 求距离 distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in X_train] nearest = np.argsort(distances) topK_y = [y_train[i] for i in nearest[:k]] votes = Counter(topK_y) return votes.most_common(1)[0][0]
sklearn 库的使用
from sklearn.neighbors import KNeighborsClassifier KNN_classifier = KNeighborsClassifier(n_neighbors=5) #n_neighbors 即是k KNN_classifier.fit(X_train, y_train) print(KNN_classifier.predict([x])) # 说明predict传入参数应为矩阵,为了是批量预测。 # 若只有一个也要转成矩阵的形式 x.reshape(1,-1)