zoukankan      html  css  js  c++  java
  • 机器人学 —— 机器人感知(Mapping)

      对于移动机器人来说,最吸引人的莫过于SLAM,堪称Moving Robot 皇冠上的明珠。Perception 服务于 SLAM,Motion Plan基于SLAM。SLAM在移动机器人整个问题框架中,起着最为核心的作用。为了专注于Mapping,此章我们假设 Location 是已知的。

    1、Metric Map

      轨迹规划任务是再Metric Map的基础上完成的。当然,层次最高的是语意图,语意图是未来研究的热点方向。获取Metric Map 的难度最大之处在于:1、传感器噪声(May be solved by PGM; 2、机器人在移动(Location 问题);

      常见的MAP是基于UGV而言的, 使用的地图是Occupancy Map,与之前在轨迹规划栏目中的图一样,以 0 表示无法到达的区域,以 1 表示可以达到的区域。

      

     

    2、传感器噪声问题的Naive Solution

      解决传感器噪声问题的方法是对传感器进行建模,其模型为概率模型:

      

      对于给定的观测,其factor 如上,当连续N次观测到同一个xy的值时,利用 factor product,即可获得n次观测的Joint CPD ,在Joint CPD 上运行MAP算法,即可获得最终的地图了。在通解的基础上,确实是这样设计算法的,但是我们目前面对的Mapping 问题还太Naive,不需要如此复杂的手段。

      

      此处定义了一个odd,表示发生与否可能性的比值。换言之,就是传感器出错的概率比,这是一个可以估计的量。比如传感器测出有物体的odd是2,没物体的odd是3.

      依据Beyes 公式把Odd展开:

      

      其中,p(m = 1|z)/p(m = 0/z) 表示的是测量完成后 odd 的值,它等于  此次测量值 + 之前的odd。

      换言之,我们只要定义好先验图与log-odd-meas,就可以了。

    3、Mapping Algorithm

      所有的东西总是说起来容易做起来难。即使是如此Naive的Map,真正Coding还是很难的。尤其是如何高效的实现Map的更新,此外,机器人每次发出的激光线达上千条,每个位姿都要更新上前个点。对此问题,我设计了并行算法,即使在并行的条件下,生成一次Map也要近20s.

      算法流程如下:

      1、将激光击中的点变换到全局坐标系下

      2、利用Breshenman 算法,获取激光通过的路径

      3、获取Occupied Map 与 Free Map

      4、更新Map.

      左图是单次测量的图,也就是机器人一个位姿的测量结果。显然,在靠近机器人的地方,噪声严重。右图是机器人在空间中移动后最终的Map。

    4、3D Mapping

      对于2维地图,我们采用 free+occupy 的形式储存空间中的障碍物。然而有障碍物的地方毕竟还是少数,或者说,地图是稀疏的。

      对于3维数据而言,我们用3维的空间来描述显然不划算,由其是当空间巨大时。此时我们选择的地图,或者说是数据结构是kd-tree 与 OcTree. 此部分内容在点云相关博客中有过介绍,不赘述。

      

        

  • 相关阅读:
    友盟上报 IOS
    UTF8编码
    Hill加密算法
    Base64编码
    Logistic Regression 算法向量化实现及心得
    152. Maximum Product Subarray(中等, 神奇的 swap)
    216. Combination Sum III(medium, backtrack, 本类问题做的最快的一次)
    77. Combinations(medium, backtrack, 重要, 弄了1小时)
    47. Permutations II(medium, backtrack, 重要, 条件较难思考)
    3.5 find() 判断是否存在某元素
  • 原文地址:https://www.cnblogs.com/ironstark/p/5559439.html
Copyright © 2011-2022 走看看