zoukankan      html  css  js  c++  java
  • 【LeetCode】112

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

    For example:
    Given the below binary tree and sum = 22,
                  5
                 / 
                4   8
               /   / 
              11  13  4
             /        
            7    2      1
    

    return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22. 

    Tags:Tree Depth-first Search
     
    Solution 1: recursion
    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        bool hasPathSum(TreeNode* root, int sum) {
            if(!root)return false;
            if(!root->left && !root->right ){
                if(root->val==sum)
                    return true;
                else
                    return false;
            }
            return hasPathSum(root->left, sum-(root->val)) || hasPathSum(root->right, sum-(root->val));
            
        }
    };
     Solution 2:  stack
    bool hasPathSum(TreeNode* root, int sum) {
        if(!root)return false;
        int cnt=root->val;
        stack<TreeNode*> stk;
        unordered_map<TreeNode*,bool> visited;
    
        stk.push(root);
        visited[root]=true;
    
        while(!stk.empty()){
            TreeNode* top=stk.top();
            if(!top->left&&!top->right){
                if(cnt==sum)return true;
            }
            if(top->left&&visited[top->left]==false){
                stk.push(top->left);
                visited[top->left]=true;
                cur+=top->left->val;
                continue;
            }
            if(top->right&&visited[top->right]==false){
                stk.push(top->right);
                visited[top->right]=true;
                cur+=top->right->val;
                continue;
            }
    
            stk.pop();
            cnt-=top->val;
        }
        return false;
    }
     
  • 相关阅读:
    收集的正则表达式
    全面解析JavaScript中“&&”和“||”操作符(总结篇)
    3.5 二叉查找树的几何应用
    3.4 散列表
    3.3 平衡查找树
    3.2 符号表之二叉查找树BST
    3.1 符号表之二分查找
    2.7 二叉堆及优先队列
    2.6 经典排序算法总结
    2.5 3-way quickSort
  • 原文地址:https://www.cnblogs.com/irun/p/4795804.html
Copyright © 2011-2022 走看看