zoukankan      html  css  js  c++  java
  • 【hdu 1787 GCD Again (数论、欧拉函数)】

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1314    Accepted Submission(s): 487


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy
     
     
     
     1 // Project name : 1787 ( GCD Again ) 
     2 // File name    : main.cpp
     3 // Author       : Izumu
     4 // Date & Time  : Tue Jul 17 15:38:12 2012
     5 
     6 
     7 #include <iostream>
     8 #include <stdio.h>
     9 #include <string>
    10 #include <cmath>
    11 #include <algorithm>
    12 using namespace std;
    13 
    14 typedef unsigned long long int longint;
    15 
    16 
    17 longint phi(longint num)
    18 {
    19     longint sum = 1;
    20     for (long int i = 2; i <= sqrt((double long)num); i++)
    21     {
    22         if (num % i == 0)
    23         {
    24             while (num % i == 0)
    25             {
    26                 sum *= i;
    27                 num /= i;
    28             }
    29             sum /= i;
    30             sum *= (i - 1);
    31         }
    32     }
    33 
    34     if (num != 1)
    35     {
    36         sum *= (num - 1);
    37     }
    38 
    39     return sum;
    40 }
    41 
    42 int main()
    43 {
    44     int n;
    45     while (cin >> n && n)
    46     {
    47         cout << n - 1 - phi(n) << endl;
    48     }
    49     
    50     return 0;
    51 }
    52 
    53 // end 
    54 // ism 
  • 相关阅读:
    CS027th: 6papers
    MATH026th: 《矩斋筹算丛刻》
    MATH026th: 《古今算学丛书》目录
    Compiler25th005: Excel Compiler
    AIIE25th004: 2020aiie在合肥举办
    AIIE21th003: 2021年第二届国际工业工程和人工智能大会(IEAI 2021)
    ComPiler200004:Library-Oriented Programming
    ComPiler200003:Story-Oriented Programming
    ComPiler200002:Growing a Compiler
    conda
  • 原文地址:https://www.cnblogs.com/ismdeep/p/2595383.html
Copyright © 2011-2022 走看看