zoukankan      html  css  js  c++  java
  • Spark Streaming性能优化: 如何在生产环境下应对流数据峰值巨变

    1、为什么引入Backpressure

          默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔。这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置间隔内不能完全处理当前接收速率接收的数据。如果这种情况持续过长的时间,会造成数据在内存中堆积,导致Receiver所在Executor内存溢出等问题(如果设置StorageLevel包含disk, 则内存存放不下的数据会溢写至disk, 加大延迟)。Spark 1.5以前版本,用户如果要限制Receiver的数据接收速率,可以通过设置静态配制参数“spark.streaming.receiver.maxRate
    ”的值来实现,此举虽然可以通过限制接收速率,来适配当前的处理能力,防止内存溢出,但也会引入其它问题。比如:producer数据生产高于maxRate,当前集群处理能力也高于maxRate,这就会造成资源利用率下降等问题。为了更好的协调数据接收速率与资源处理能力,Spark Streaming 从v1.5开始引入反压机制(back-pressure),通过动态控制数据接收速率来适配集群数据处理能力。
    2、Backpressure
          Spark Streaming Backpressure: 根据JobScheduler反馈作业的执行信息来动态调整Receiver数据接收率。通过属性“spark.streaming.backpressure.enabled”来控制是否启用backpressure机制,默认值false,即不启用。
    2.1 Streaming架构如下图所示(详见Streaming数据接收过程文档和Streaming 源码解析)



    2.2 BackPressure执行过程如下图所示:
      在原架构的基础上加上一个新的组件RateController,这个组件负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息. Estimator依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream将rate通过ReceiverTracker与ReceiverSupervisorImpl转发给BlockGenerator(继承自RateLimiter).

    3、BackPressure 源码解析
    3.1 RateController类体系
    RatenController 继承自StreamingListener. 用于处理BatchCompleted事件。核心代码为:

    **
     * A StreamingListener that receives batch completion     updates, and maintains
     * an estimate of the speed at which this stream should ingest messages,
     * given an estimate computation from a `RateEstimator`
     */
    private[streaming] abstract class RateController(val streamUID: Int, rateEstimator: RateEstimator)
    extends StreamingListener with Serializable {
      /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
        rateLimit.set(s.toLong)
        publish(getLatestRate())
      }
    }
    def getLatestRate(): Long = rateLimit.get()
    
    override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
    val elements = batchCompleted.batchInfo.streamIdToInputInfo
    for {
      processingEnd <- batchCompleted.batchInfo.processingEndTime
      workDelay <- batchCompleted.batchInfo.processingDelay
      waitDelay <- batchCompleted.batchInfo.schedulingDelay
      elems <- elements.get(streamUID).map(_.numRecords)
    } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
    }
    }

    3.2 RateController的注册
    JobScheduler启动时会抽取在DStreamGraph中注册的所有InputDstream中的rateController,并向ListenerBus注册监听. 此部分代码如下:

    def start(): Unit = synchronized {
       if (eventLoop != null) return // scheduler has already been started
    
       logDebug("Starting JobScheduler")
       eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
       override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
    
       override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
     }
     eventLoop.start()
    
     // attach rate controllers of input streams to receive batch completion updates
     for {
       inputDStream <- ssc.graph.getInputStreams
       rateController <- inputDStream.rateController
     } ssc.addStreamingListener(rateController)</span>
    
     listenerBus.start()
     receiverTracker = new ReceiverTracker(ssc)
     inputInfoTracker = new InputInfoTracker(ssc)
     receiverTracker.start()
     jobGenerator.start()
     logInfo("Started JobScheduler")
    }

    3.3 BackPressure执行过程分析
    BackPressure 执行过程分为BatchCompleted事件触发时机和事件处理两个过程
    3.3.1 BatchCompleted触发过程
    对BatchedCompleted的分析,应该从JobGenerator入手,因为BatchedCompleted是批次处理结束的标志,也就是JobGenerator产生的作业执行完成时触发的,因此进行作业执行分析。
    Streaming 应用中JobGenerator每个Batch Interval都会为应用中的每个Output Stream建立一个Job, 该批次中的所有Job组成一个Job Set.使用JobScheduler的submitJobSet进行批量Job提交。此部分代码结构如下所示

     /** Generate jobs and perform checkpoint for the given `time`.  */
    private def generateJobs(time: Time) {
      // Set the SparkEnv in this thread, so that job generation code can access the environment
      // Example: BlockRDDs are created in this thread, and it needs to access BlockManager
      // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.
      SparkEnv.set(ssc.env)
    
      // Checkpoint all RDDs marked for checkpointing to ensure their lineages are
      // truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
      ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
      Try {
        jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
        graph.generateJobs(time) // generate jobs using allocated block
      } match {
        case Success(jobs) =>
          val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
    jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
        case Failure(e) =>
          jobScheduler.reportError("Error generating jobs for time " + time, e)
    }
    eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
    }

    其中,sumitJobSet会创建固定数量的后台线程(具体由“spark.streaming.concurrentJobs”指定),去处理Job Set中的Job. 具体实现逻辑为:

    def submitJobSet(jobSet: JobSet) {
      if (jobSet.jobs.isEmpty) {
        logInfo("No jobs added for time " + jobSet.time)
      } else {
        listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
        jobSets.put(jobSet.time, jobSet)
        jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
        logInfo("Added jobs for time " + jobSet.time)
      }
    }

    其中JobHandler用于执行Job及处理Job执行结果信息。当Job执行完成时会产生JobCompleted事件. JobHandler的具体逻辑如下面代码所示:

    当Job执行完成时,向eventLoop发送JobCompleted事件。EventLoop事件处理器接到JobCompleted事件后将调用handleJobCompletion 来处理Job完成事件。handleJobCompletion使用Job执行信息创建StreamingListenerBatchCompleted事件并通过StreamingListenerBus向监听器发送。实现如下:

    private def handleJobCompletion(job: Job, completedTime: Long) {
       val jobSet = jobSets.get(job.time)
       jobSet.handleJobCompletion(job)
       job.setEndTime(completedTime)
       listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
       logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
       if (jobSet.hasCompleted) {
         jobSets.remove(jobSet.time)
         jobGenerator.onBatchCompletion(jobSet.time)
         logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
         jobSet.totalDelay / 1000.0, jobSet.time.toString,
         jobSet.processingDelay / 1000.0
       ))
     listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
     }
     job.result match {
       case Failure(e) =>
           reportError("Error running job " + job, e)
       case _ =>
     }
    }

    3.3.2、BatchCompleted事件处理过程
    StreamingListenerBus将事件转交给具体的StreamingListener,因此BatchCompleted将交由RateController进行处理。RateController接到BatchCompleted事件后将调用onBatchCompleted对事件进行处理。

    override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) {
      val elements = batchCompleted.batchInfo.streamIdToInputInfo
    
      for {
        processingEnd <- batchCompleted.batchInfo.processingEndTime
        workDelay <- batchCompleted.batchInfo.processingDelay
        waitDelay <- batchCompleted.batchInfo.schedulingDelay
        elems <- elements.get(streamUID).map(_.numRecords)
      } computeAndPublish(processingEnd, elems, workDelay, waitDelay)
    }

    onBatchCompleted会从完成的任务中抽取任务的执行延迟和调度延迟,然后用这两个参数用RateEstimator(目前存在唯一实现PIDRateEstimator,proportional-integral-derivative (PID) controller, PID控制器)估算出新的rate并发布。代码如下:

    /**
       * Compute the new rate limit and publish it asynchronously.
       */
      private def computeAndPublish(time: Long, elems: Long, workDelay: Long, waitDelay: Long): Unit =
    Future[Unit] {
      val newRate = rateEstimator.compute(time, elems, workDelay, waitDelay)
      newRate.foreach { s =>
        rateLimit.set(s.toLong)
        publish(getLatestRate())
      }
    }

    其中publish()由RateController的子类ReceiverRateController来定义。具体逻辑如下(ReceiverInputDStream中定义):

    /**
       * A RateController that sends the new rate to receivers, via the receiver tracker.
       */
     private[streaming] class ReceiverRateController(id: Int, estimator: RateEstimator)
      extends RateController(id, estimator) {
      override def publish(rate: Long): Unit =
        ssc.scheduler.receiverTracker.sendRateUpdate(id, rate)
    }

    publish的功能为新生成的rate 借助ReceiverTracker进行转发。ReceiverTracker将rate包装成UpdateReceiverRateLimit事交ReceiverTrackerEndpoint

    /** Update a receiver's maximum ingestion rate */
    def sendRateUpdate(streamUID: Int, newRate: Long):   Unit = synchronized {
      if (isTrackerStarted) {
        endpoint.send(UpdateReceiverRateLimit(streamUID, newRate))
      }
    }

    ReceiverTrackerEndpoint接到消息后,其将会从receiverTrackingInfos列表中获取Receiver注册时使用的endpoint(实为ReceiverSupervisorImpl),再将rate包装成UpdateLimit发送至endpoint.其接到信息后,使用updateRate更新BlockGenerators(RateLimiter子类),来计算出一个固定的令牌间隔。

    其中RateLimiter的updateRate实现如下:

    /**
      * Set the rate limit to `newRate`. The new rate will not exceed the maximum rate configured by
      * {{{spark.streaming.receiver.maxRate}}}, even if `newRate` is higher than that.
      *
      * @param newRate A new rate in events per second. It has no effect if it's 0 or negative.
      */
     private[receiver] def updateRate(newRate: Long): Unit =
       if (newRate > 0) {
       if (maxRateLimit > 0) {
         rateLimiter.setRate(newRate.min(maxRateLimit))
       } else {
         rateLimiter.setRate(newRate)
       }
     }

    setRate的实现如下:

    public final void setRate(double permitsPerSecond) {
      Preconditions.checkArgument(permitsPerSecond > 0.0
        && !Double.isNaN(permitsPerSecond), "rate must be positive");
      synchronized (mutex) {
        resync(readSafeMicros());
        double stableIntervalMicros = TimeUnit.SECONDS.toMicros(1L) / permitsPerSecond;  //固定间隔
        this.stableIntervalMicros = stableIntervalMicros;
        doSetRate(permitsPerSecond, stableIntervalMicros);
      }
    }

    到此,backpressure反压机制调整rate结束。

    4.流量控制点
      当Receiver开始接收数据时,会通过supervisor.pushSingle()方法将接收的数据存入currentBuffer等待BlockGenerator定时将数据取走,包装成block. 在将数据存放入currentBuffer之时,要获取许可(令牌)。如果获取到许可就可以将数据存入buffer, 否则将被阻塞,进而阻塞Receiver从数据源拉取数据。

      /**
       * Push a single data item into the buffer.
       */
      def addData(data: Any): Unit = {
          if (state == Active) {
             waitToPush()  //获取令牌
            synchronized {
              if (state == Active) {
                currentBuffer += data
              } else {
                throw new SparkException(
            "Cannot add data as BlockGenerator has not been started or has been stopped")
              }
            }
          } else {
            throw new SparkException(
        "Cannot add data as BlockGenerator has not been started or has been stopped")
    }

    其令牌投放采用令牌桶机制进行, 原理如下图所示:

    令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。
      Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer. 然后等价后续生成block操作。


      令牌桶机制: 大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。当进行某操作时需要令牌时会从令牌桶中取出相应的令牌数,如果获取到则继续操作,否则阻塞。用完之后不用放回。
      Streaming 数据流被Receiver接收后,按行解析后存入iterator中。然后逐个存入Buffer,在存入buffer时会先获取token,如果没有token存在,则阻塞;如果获取到则将数据存入buffer. 然后等价后续生成block操作。

  • 相关阅读:
    《Python 学习手册4th》 第十一章 赋值、表达式和打印
    《Python 学习手册4th》 第十章 Python语句简介
    视图
    表约束
    表值参数
    表操作
    MSSQL数据批量插入优化详细
    SQL Server表分区
    表分区中的分区交换
    maven命令和maven插件
  • 原文地址:https://www.cnblogs.com/itboys/p/6486089.html
Copyright © 2011-2022 走看看