zoukankan      html  css  js  c++  java
  • 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)

    目录

      朴素贝叶斯原理

      朴素贝叶斯代码(Spark Python)


    朴素贝叶斯原理

       详见博文:http://www.cnblogs.com/itmorn/p/7905975.html

     返回目录

    朴素贝叶斯代码(Spark Python) 

      

      代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1

    # -*-coding=utf-8 -*-  
    from pyspark import SparkConf, SparkContext
    sc = SparkContext('local')
    
    from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel
    from pyspark.mllib.util import MLUtils
    
    # Load and parse the data file.
    data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
    '''
    每一行使用以下格式表示一个标记的稀疏特征向量
    label index1:value1 index2:value2 ...
    
    tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\n-1\n-1 2:4.0 4:5.0 6:6.0")
    >>> tempFile.flush()
    >>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
    >>> tempFile.close()
    >>> examples[0]
    LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
    >>> examples[1]
    LabeledPoint(-1.0, (6,[],[]))
    >>> examples[2]
    LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
    '''
    # Split data approximately into training (60%) and test (40%) 将数据集按照6:4的比例分成训练集和测试集
    training, test = data.randomSplit([0.6, 0.4])
    
    # Train a naive Bayes model. 训练朴素贝叶斯模型
    model = NaiveBayes.train(training, 1.0)
    
    # Make prediction and test accuracy. 预测和测试准确率
    predictionAndLabel = test.map(lambda p: (model.predict(p.features), p.label))
    accuracy = 1.0 * predictionAndLabel.filter(lambda pl: pl[0] == pl[1]).count() / test.count()
    print('model accuracy {}'.format(accuracy)) #1
    
    # Save and load model 保存和加载模型
    output_dir = 'myNaiveBayesModel'
    model.save(sc, output_dir)
    sameModel = NaiveBayesModel.load(sc, output_dir)
    predictionAndLabel = test.map(lambda p: (sameModel.predict(p.features), p.label))
    accuracy = 1.0 * predictionAndLabel.filter(lambda pl: pl[0] == pl[1]).count() / test.count()
    print('sameModel accuracy {}'.format(accuracy)) #1

     返回目录

  • 相关阅读:
    webpack--------类似gulp的工具,在gulp后面出来的
    canvas 绘制矩形
    HTML5 Canvas基础知识
    视差滚动效果
    闭包的理解
    AJAX 跨域
    json与jsonp的区别
    针对AJAX与JSONP的异同
    如何使用JSONP
    JSONP的客户端的具体实现
  • 原文地址:https://www.cnblogs.com/itmorn/p/8023667.html
Copyright © 2011-2022 走看看