一、问题引入
BitMap从字面的意思,很多人认为是位图,其实准确的来说,翻译成基于位的映射,怎么理解呢?
举一个例子,有一个无序有界int数组{1,2,5,7},初步估计占用内存44=16字节,这倒是没什么奇怪的,但是假如有10亿个这样的数呢,10亿4/(102410241024)=3.72G左右。如果这样的一个大的数据做查找和排序,那估计内存也崩溃了,有人说,这些数据可以不用一次性加载,那就是要存盘了,存盘必然消耗IO。我们提倡的是高性能,这个方案直接不考虑。
二、问题分析
如果用BitMap思想来解决的话,就好很多,那么BitMap是怎么解决的啊,如下:
一个byte是占8个bit,如果每一个bit的值就是有或者没有,也就是二进制的0或者1,如果用bit的位置代表数组值有还是没有,那么0代表该数值没有出现过,1代表该数组值出现过。不也能描述数据了吗?如下图:
是不是很神奇,那么现在假如10亿的数据所需的空间就是3.72G/32了吧,一个占用32bit的数据现在只占用了1bit,节省了不少的空间,排序就更不用说了,一切显得那么顺利。这样的数据之间没有关联性,要是读取的,你可以用多线程的方式去读取。时间复杂度方面也是O(Max/n),其中Max为byte[]数组的大小,n为线程大小。
三、应用与代码
如果BitMap仅仅是这个特点,我觉得还不是它的优雅的地方,接下来继续欣赏它的魅力所在。下面的计算思想其实就是针对bit的逻辑运算得到,类似这种逻辑运算的应用场景可以用于权限计算之中。
再看代码之前,我们先搞清楚一个问题,一个数怎么快速定位它的索引号,也就是说搞清楚byte[index]的index是多少,position是哪一位。举个例子吧,例如add(14)。14已经超出byte[0]的映射范围,在byte[1]范围之类。那么怎么快速定位它的索引呢。如果找到它的索引号,又怎么定位它的位置呢。Index(N)代表N的索引号,Position(N)代表N的所在的位置号。
Index(N) = N/8 = N >> 3;
Position(N) = N%8 = N & 0x07;
基于上面的分析,我们写一个简单的BitMap的算法如下:
1 public class BitMap { 2 //保存数据的 3 private byte[] bits; 4 5 //能够存储多少数据 6 private int capacity; 7 8 9 public BitMap(int capacity){ 10 this.capacity = capacity; 11 12 //1bit能存储8个数据,那么capacity数据需要多少个bit呢,capacity/8+1,右移3位相当于除以8 13 bits = new byte[(capacity >>3 )+1]; 14 } 15 16 public void add(int num){ 17 // num/8得到byte[]的index 18 int arrayIndex = num >> 3; 19 20 // num%8得到在byte[index]的位置 21 int position = num & 0x07; 22 23 //将1左移position后,那个位置自然就是1,然后和以前的数据做|,这样,那个位置就替换成1了。 24 bits[arrayIndex] |= 1 << position; 25 } 26 27 public boolean contain(int num){ 28 // num/8得到byte[]的index 29 int arrayIndex = num >> 3; 30 31 // num%8得到在byte[index]的位置 32 int position = num & 0x07; 33 34 //将1左移position后,那个位置自然就是1,然后和以前的数据做&,判断是否为0即可 35 return (bits[arrayIndex] & (1 << position)) !=0; 36 } 37 38 public void clear(int num){ 39 // num/8得到byte[]的index 40 int arrayIndex = num >> 3; 41 42 // num%8得到在byte[index]的位置 43 int position = num & 0x07; 44 45 //将1左移position后,那个位置自然就是1,然后对取反,再与当前值做&,即可清除当前的位置了. 46 bits[arrayIndex] &= ~(1 << position); 47 48 49 } 50 51 public static void main(String[] args) { 52 BitMap bitmap = new BitMap(100); 53 bitmap.add(7); 54 System.out.println("插入7成功"); 55 56 boolean isexsit = bitmap.contain(7); 57 System.out.println("7是否存在:"+isexsit); 58 59 bitmap.clear(7); 60 isexsit = bitmap.contain(7); 61 System.out.println("7是否存在:"+isexsit); 62 } 63 }