zoukankan      html  css  js  c++  java
  • 【Java多线程】AtomicLong和LongAdder

    AtomicLong简要介绍

    AtomicLong是作用是对长整形进行原子操作,显而易见,在java1.8中新加入了一个新的原子类LongAdder,该类也可以保证Long类型操作的原子性,相对于AtomicLong,LongAdder有着更高的性能和更好的表现,可以完全替代AtomicLong的来进行原子操作。
    在32位操作系统中,64位的long 和 double 变量由于会被JVM当作两个分离的32位来进行操作,所以不具有原子性。而使用AtomicLong能让long的操作保持原子型。

    AtomicLong的实现方式是内部有个value 变量,当多线程并发自增,自减时,均通过cas 指令从机器指令级别操作保证并发的原子性。

    唯一会制约AtomicLong高效的原因是高并发,高并发意味着CAS的失败几率更高, 重试次数更多,越多线程重试,CAS失败几率又越高,变成恶性循环,AtomicLong效率降低。 那怎么解决?

    LongAdder给了我们一个非常容易想到的解决方案: 减少并发,将单一value的更新压力分担到多个value中去,降低单个value的 “热度”,分段更新!!!   这样,线程数再多也会分担到多个value上去更新,只需要增加value就可以降低 value的 “热度”  AtomicLong中的 恶性循环不就解决了吗? cells 就是这个 “段” cell中的value 就是存放更新值的, 这样,当我需要总数时,把cells 中的value都累加一下不就可以了么!!

    当然,聪明之处远远不仅仅这里,在看看add方法中的代码,casBase方法可不可以不要,直接分段更新,上来就计算 索引位置,然后更新value?

    答案是不好,不是不行,因为,casBase操作等价于AtomicLong中的cas操作,要知道,LongAdder这样的处理方式是有坏处的,分段操作必然带来空间上的浪费,可以空间换时间,但是,能不换就不换,看空间时间都节约~! 所以,casBase操作保证了在低并发时,不会立即进入分支做分段更新操作,因为低并发时,casBase操作基本都会成功,只有并发高到一定程度了,才会进入分支,所以,Doug Lead对该类的说明是: 低并发时LongAdder和AtomicLong性能差不多,高并发时LongAdder更高效!

    但是,Doung Lea 还是没这么简单,聪明之处还没有结束……

    如此,retryUpdate中做了什么事,也基本略知一二了,因为cell中的value都更新失败(说明该索引到这个cell的线程也很多,并发也很高时) 或者cells数组为空时才会调用retryUpdate,

    因此,retryUpdate里面应该会做两件事:

    1. 扩容,将cells数组扩大,降低每个cell的并发量,同样,这也意味着cells数组的rehash动作。

    2. 给空的cells变量赋一个新的Cell数组。

     

    LongAdder确实用了很多心思减少并发量,并且,每一步都是在”没有更好的办法“的时候才会选择更大开销的操作,从而尽可能的用最最简单的办法去完成操作。追求简单,但是绝对不粗暴。

    AtomicLong可不可以废掉?
    我的想法是可以废掉了,因为,虽然LongAdder在空间上占用略大,但是,它的性能已经足以说明一切了,无论是从节约空的角度还是执行效率上,AtomicLong基本没有优势了,具体看这个测试(感谢coolshell读者Lemon的回复):http://blog.palominolabs.com/2014/02/10/java-8-performance-improvements-longadder-vs-atomiclong/

    转自:https://blog.csdn.net/wangxiaotongfan/article/details/51745506?locationNum=1&fps=1


  • 相关阅读:
    Account group in ERP and its mapping relationship with CRM partner group
    错误消息Number not in interval XXX when downloading
    错误消息Form of address 0001 not designated for organization
    Algorithm类介绍(core)
    梯度下降与随机梯度下降
    反思
    绘图: matplotlib核心剖析
    ORB
    SIFT
    Harris角点
  • 原文地址:https://www.cnblogs.com/itplay/p/9937811.html
Copyright © 2011-2022 走看看