zoukankan      html  css  js  c++  java
  • 【AtCoder】ARC076

    ARC076

    C - Reconciled?

    如果(N = M)

    答案是(2N!M!)

    如果(|N - M| = 1)

    答案是(N!M!)

    否则答案是0

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    const int MOD = 1000000007;
    int N,M;
    int fac[MAXN];
    int inc(int a,int b) {
        return a + b >= MOD ? a + b - MOD : a + b;
    }
    int mul(int a,int b) {
        return 1LL * a * b % MOD;
    }
    void Solve() {
        read(N);read(M);
        if(abs(N - M) > 1) {puts("0");return;}
        fac[0] = 1;
        for(int i = 1 ; i <= max(N,M) ; ++i) {
    	fac[i] = mul(fac[i - 1],i);
        }
    
        int ans = mul(fac[N],fac[M]);
        if(N == M) {
    	ans = mul(ans,2);
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    D - Built?

    发现横坐标排序和纵坐标排序后,只有相邻的边会有边

    然后跑最小生成树即可

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    const int MOD = 1000000007;
    int N;
    int x[MAXN],y[MAXN];
    int id[MAXN],cnt,fa[MAXN];
    struct node {
        int u,v,c;
    }E[MAXN * 10];
    int getfa(int u) {
        return fa[u] == u ? u : fa[u] = getfa(fa[u]);
    }
    void Solve() {
        read(N);
        for(int i = 1 ; i <= N ; ++i) {read(x[i]);read(y[i]);}
        for(int i = 1 ; i <= N ; ++i) id[i] = i;
        sort(id + 1,id + N + 1,[](int a,int b) {return x[a] < x[b];});
        for(int i = 1 ; i < N ; ++i) {
    	E[++cnt] = (node){id[i],id[i + 1],x[id[i + 1]] - x[id[i]]};
        }
        for(int i = 1 ; i <= N ; ++i) id[i] = i;
        sort(id + 1,id + N + 1,[](int a,int b) {return y[a] < y[b];});
        for(int i = 1 ; i < N ; ++i) {
    	E[++cnt] = (node){id[i],id[i + 1],y[id[i + 1]] - y[id[i]]};
        }
        sort(E + 1,E + cnt + 1,[](node a,node b){return a.c < b.c;});
        for(int i = 1 ; i <= N ; ++i) fa[i] = i;
        int ans = 0;
        for(int i = 1 ; i <= cnt ; ++i) {
    	if(getfa(E[i].u) != getfa(E[i].v)) {
    	    ans += E[i].c;
    	    fa[getfa(E[i].u)] = getfa(E[i].v);
    	}
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    E - Connected?

    只有两个点都在边上的连线才有影响,我们把这些点按照顺时针(逆时针也可以)扔进栈里,栈顶元素和它相同则弹出,如果最后栈是空的就合法,否则就不合法

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    struct node {
        int x,y,p;
    };
    int R,C;
    int N;
    int x[MAXN][2],y[MAXN][2];
    vector<node> v[4];
    int sta[MAXN * 2],top;
    bool on_u(int x,int y) {
        return x == 0;
    }
    bool on_l(int x,int y) {
        return x != 0 && x != R && y == 0;
    }
    bool on_r(int x,int y) {
        return x != 0 && x != R && y == C;
    }
    bool on_d(int x,int y) {
        return x == R;
    }
    bool check(int x,int y) {
        return on_u(x,y) || on_l(x,y) || on_r(x,y) || on_d(x,y);
    }
    int id(int x,int y) {
        if(on_u(x,y)) return 0;
        else if(on_r(x,y)) return 1;
        else if(on_d(x,y)) return 2;
        else return 3;
    }
    void Solve() {
        read(R);read(C);read(N);
        for(int i = 1 ; i <= N ; ++i) {
    	for(int j = 0 ; j <= 1 ; ++j) {read(x[i][j]);read(y[i][j]);}
    	if(check(x[i][0],y[i][0]) && check(x[i][1],y[i][1])) {
    	    v[id(x[i][0],y[i][0])].pb((node){x[i][0],y[i][0],i});
    	    v[id(x[i][1],y[i][1])].pb((node){x[i][1],y[i][1],i});
    	}
        }
        sort(v[0].begin(),v[0].end(),[](node a,node b){return a.y < b.y;});
        sort(v[1].begin(),v[1].end(),[](node a,node b){return a.x < b.x;});
        sort(v[2].begin(),v[2].end(),[](node a,node b){return a.y > b.y;});
        sort(v[3].begin(),v[3].end(),[](node a,node b){return a.x > b.x;});
        for(int i = 0 ; i < 4 ; ++i) {
    	for(auto t : v[i]) {
    	    if(sta[top] == t.p) --top;
    	    else sta[++top] = t.p;
    	}
        }
        if(top) puts("NO");
        else puts("YES");
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    

    F - Exhausted?

    线段树维护hall定理,好像之前遇到过类似的但是没有写这个做法。。。

    hall定理是什么呢

    (X,Y)为两边的点集,(X)(Y)之间存在完美匹配,仅当(X)中任意(k)个点组成的点集和(Y)中的至少(k )个点相连

    这是充分必要的

    那么我们求的是人数-最大匹配,也就是每个点集减去匹配(Y)点集椅子个数的最大值,初始的答案先设成(max(N - M,0))

    设点集大小为(|X|),匹配(Y)点集的椅子数是(Gamma(X))

    答案显然不小于((|X| - |Gamma(X)|)_{max})

    如果答案大于((|X| - |Gamma(X)|)_{max}),设(t > (|X| - |Gamma(X)|)_{max}),如果当前存在一个大于t的未匹配点,那么选这t个点一定与对面至少一个点相连,设为(v),若v被匹配,找到匹配点u,u与这t个点组成的点集匹配至少两个点,所以可以增加一个匹配点,可以证明答案不大于((|X| - |Gamma(X)|)_{max})

    所以只要考虑怎么求((|X| - |Gamma(X)|)_{max})

    显然是对于一个固定的区间,计算多少个点的(L_{i},R_{i})覆盖了这个区间,所以把区间按左端点排序,然后线段树维护即可

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define MAXN 200005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,M;
    struct node {
        int l,r;
    }p[MAXN];
    struct seg_tree {
        int l,r;
        int lz,mx;
    }tr[MAXN * 4];
    void update(int u) {
        tr[u].mx = max(tr[u << 1 | 1].mx,tr[u << 1].mx);
    }
    void addlz(int u,int v) {
        tr[u].mx += v;tr[u].lz += v;
    }
    void pushdown(int u) {
        if(tr[u].lz) {
    	addlz(u << 1,tr[u].lz);
    	addlz(u << 1 | 1,tr[u].lz);
    	tr[u].lz = 0;
        }
    }
    void build(int u,int l,int r) {
        tr[u].l = l;tr[u].r = r;
        if(l == r) {
    	tr[u].mx = r;
    	return;
        }
        int mid = (l + r) >> 1;
        build(u << 1,l,mid);
        build(u << 1 | 1,mid + 1,r);
        update(u);
    }
    void Change(int u,int l,int r,int v) {
        if(tr[u].l == l && tr[u].r == r) {addlz(u,v);return;}
        pushdown(u);
        int mid = (tr[u].l + tr[u].r) >> 1;
        if(r <= mid) Change(u << 1,l,r,v);
        else if(l > mid) Change(u << 1 | 1,l,r,v);
        else {Change(u << 1,l,mid,v);Change(u << 1 | 1,mid + 1,r,v);}
        update(u);
    }
    int Query(int u,int l,int r) {
        if(tr[u].l == l && tr[u].r == r) {return tr[u].mx;}
        pushdown(u);
        int mid = (tr[u].l + tr[u].r) >> 1;
        if(r <= mid) return Query(u << 1,l,r);
        else if(l > mid) return Query(u << 1 | 1,l,r);
        else return max(Query(u << 1,l,mid),Query(u << 1 | 1,mid + 1,r));
    }
    void Solve() {
        read(N);read(M);
        for(int i = 1 ; i <= N ; ++i) {
    	read(p[i].l);read(p[i].r);
        }
        build(1,1,M + 1);
        sort(p + 1,p + N + 1,[](node a,node b){return a.l < b.l || (a.l == b.l && a.r > b.r);});
        int ans = max(0,N - M);
        for(int i = 1 ; i <= N ; ++i) {
    	Change(1,p[i].l + 1,p[i].r,1);
    	int t = Query(1,p[i].l + 1,M + 1) - M - p[i].l - 1;
    	ans = max(ans,t);
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
    }
    
  • 相关阅读:
    django之快速分页
    python django 使用 haystack:全文检索的框架
    django的admin或者应用中使用KindEditor富文本编辑器
    Ubuntu安装微信
    python 基本模块
    [LeetCode] 860. 柠檬水找零 lemonade-change(贪心算法)
    [LeetCode] 455. 分发饼干 assign-cookies(贪心算法)
    [LeetCode] 122. 买卖股票的最佳时机ii best-time-to-buy-and-sell-stock-ii(贪心算法)
    [LeetCode] 225. 用队列实现栈
    [LeetCode] 155. minStack 设计最小栈
  • 原文地址:https://www.cnblogs.com/ivorysi/p/10617304.html
Copyright © 2011-2022 走看看