zoukankan      html  css  js  c++  java
  • 【POJ】2043.Area of Polygons

    原题戳这里
    开始一小段时间的POJ计算几何练习计划(估计很快就会被恶心回去)

    题解

    用一条平行于y轴的扫描线,计算两条扫描线之间多少格子被覆盖了
    精度可tm变态了,可能是因为题目要求的关系吧,需要上取整和下取整,可能有一点误差也给算进去了,精度掉的很大
    看一下上一次的上边界是哪里,不要重复计算

    代码

    #include <iostream>
    #include <cstdio>
    #include <vector>
    #include <set>
    #include <cstring>
    #include <ctime>
    #include <map>
    #include <algorithm>
    #include <cmath>
    #define MAXN 100005
    #define eps 1e-8
    //#define ivorysi
    #define PDD pair<db,db>
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long int64;
    typedef double db;
    int N;
    bool dcmp(db a,db b) {
    	return fabs(a - b) < eps;
    }
    bool Gter(db a,db b) {
    	return a > b + eps;
    }
    struct Point {
    	db x,y;
    	Point() {}
    	Point(db _x,db _y) {
    		x = _x;y = _y;
    	}
    	friend Point operator + (const Point &a,const Point &b) {
    		return Point(a.x + b.x,a.y + b.y);
    	}
    	friend Point operator - (const Point &a,const Point &b) {
    		return Point(a.x - b.x,a.y - b.y);
    	}
    	friend Point operator / (const Point &a,const db &k) {
    		return Point(a.x / k,a.y / k);
    	}
    	friend Point operator * (const Point &a,const db &k) {
    		return Point(a.x * k,a.y * k);
    	}
    	friend db operator * (const Point &a,const Point &b) {
    		return a.x * b.y - a.y * b.x;
    	}
    }P[205];
    db dot(Point a,Point b) {
    	return a.x * b.x + a.y * b.y; 
    }
    struct Seg {
    	Point a,b;
    	Seg() {}
    	Seg(Point _a,Point _b) {
    		a = _a;b = _b;
    	}
    }Line[205];
    PDD Y[205];
    
    void Solve() {
    	int ans = 0;
    	int st = 2000,ed = -2000;
    	for(int i = 1 ; i <= N ; ++i) {
    		scanf("%lf%lf",&P[i].x,&P[i].y);
    		st = min(st,(int)P[i].x);
    		ed = max(ed,(int)P[i].x);
    	}
    	P[N + 1] = P[1];
    	for(int i = 1 ; i <= N ; ++i) {
    		if(P[i].x > P[i + 1].x) Line[i] = Seg(P[i + 1],P[i]);
    		else Line[i] = Seg(P[i],P[i + 1]);
    	}
    	for(int i = st ; i <= ed ; ++i) {
    		int cnt = 0;
    		for(int j = 1 ; j <= N ; ++j) {
    			if(Line[j].a.x <= i && Line[j].b.x >= i + 1) {
    				db a = Line[j].a.y + (i - Line[j].a.x) * (Line[j].b.y - Line[j].a.y) / (Line[j].b.x - Line[j].a.x);
    				db b = Line[j].a.y + (i - Line[j].a.x + 1) * (Line[j].b.y - Line[j].a.y) / (Line[j].b.x - Line[j].a.x);
    				Y[++cnt] = mp(a,b);
    			}
    		}
    		sort(Y + 1,Y + cnt + 1);
    		int last = -4001;
    		for(int j = 1 ; j <= cnt ; j += 2) {
    			int f = floor(min(Y[j].fi,Y[j].se));
    			int c = ceil(max(Y[j + 1].fi,Y[j + 1].se));
    			f = max(f,last);
    			ans += c - f;
    			last = c;
    		}
    	}
    	printf("%d
    ",ans);
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        while(scanf("%d",&N) != EOF && N) {
        	Solve();
    	}
        return 0;
    }
    
  • 相关阅读:
    H5纯前端获取视频第一帧、大小、尺寸、类型等
    HTML5 拖放(Drag 和 Drop)
    HTML5 MathML:在文档中使用 MathML 元素,对应的标签是 <math>...</math>
    HTML5 内联 SVG:什么是SVG?SVG优势
    docker-machine安装教程
    Manjaro系统和软件安装记录
    geektime专栏《Java并发编程实战》笔记【待完成】
    kubernetes之三 使用kubectl在k8s上部署应用
    给虚拟机CentOS7扩容(lvm方式)
    分析SQL的执行过程
  • 原文地址:https://www.cnblogs.com/ivorysi/p/8993870.html
Copyright © 2011-2022 走看看