题解
求一个最小的半径的球,包括三维平面上所有的点,输出半径
随机移动球心,半径即为距离最远的点,移动的方式是向离的最远的那个点移动一点,之后模拟退火就好
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
//#define ivorysi
#define MAXN 105
#define eps 1e-8
#define pb push_back
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
struct Point {
db x,y,z;
Point(db _x = 0,db _y = 0,db _z = 0) {
x = _x;y = _y;z = _z;
}
}P[35];
int N;
u32 Rand() {
static u32 x = 1736382156;
return x += x << 2 | 1;
}
db Rand_p() {
return (db) (Rand() % 10000) / 10000;
}
inline db o(db x) {return x * x;}
db dist(Point a,Point b) {
return sqrt(o(a.x - b.x) + o(a.y - b.y) + o(a.z - b.z));
}
db get_radius(Point a) {
db res = dist(a,P[1]);
for(int i = 2 ; i <= N ; ++i) res = max(res,dist(P[i],a));
return res;
}
int get_farthest(Point a) {
int r = 1;
for(int i = 2 ; i <= N ; ++i) {
if(dist(a,P[i]) > dist(a,P[r])) r = i;
}
return r;
}
void Solve() {
db delta = 0.99,T = 1000;
db now = get_radius(P[1]),ans = now;
Point s = P[1];
while(T > eps) {
ans = min(ans,now);
int c = get_farthest(s);
db d = dist(P[c],s);
Point t = Point(s.x + (P[c].x - s.x) / d * T,s.y + (P[c].y - s.y) / d * T,s.z + (P[c].z - s.z) / d * T);
db r = get_radius(t);
if(r <= now) {
now = r,s = t;
}
else {
if(exp((now - r) / T) > Rand_p()) {
now = r,s = t;
}
}
T *= delta;
}
printf("%.5f
",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
while(scanf("%d",&N) != EOF && N) {
for(int i = 1 ; i <= N ; ++i) {
scanf("%lf%lf%lf",&P[i].x,&P[i].y,&P[i].z);
}
Solve();
}
}