zoukankan      html  css  js  c++  java
  • 【POJ】2069.Super Star

    题解

    求一个最小的半径的球,包括三维平面上所有的点,输出半径

    随机移动球心,半径即为距离最远的点,移动的方式是向离的最远的那个点移动一点,之后模拟退火就好

    代码

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    //#define ivorysi
    #define MAXN 105
    #define eps 1e-8
    #define pb push_back
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    struct Point {
        db x,y,z;
        Point(db _x = 0,db _y = 0,db _z = 0) {
    	x = _x;y = _y;z = _z;
        }
    }P[35];
    int N;
    u32 Rand() {
        static u32 x = 1736382156;
        return x += x << 2 | 1;
    }
    db Rand_p() {
        return (db) (Rand() % 10000) / 10000;
    }
    inline db o(db x) {return x * x;}
    db dist(Point a,Point b) {
        return sqrt(o(a.x - b.x) + o(a.y - b.y) + o(a.z - b.z));
    }
    db get_radius(Point a) {
        db res = dist(a,P[1]);
        for(int i = 2 ; i <= N ; ++i) res = max(res,dist(P[i],a));
        return res;
    }
    int get_farthest(Point a) {
        int r = 1;
        for(int i = 2 ; i <= N ; ++i) {
    	if(dist(a,P[i]) > dist(a,P[r])) r = i;
        }
        return r;
    }
    void Solve() {
        db delta = 0.99,T = 1000;
        db now = get_radius(P[1]),ans = now;
        Point s = P[1];
        while(T > eps) {
    	ans = min(ans,now);
    	int c = get_farthest(s);
    	db d = dist(P[c],s);
    	Point t = Point(s.x + (P[c].x - s.x) / d * T,s.y + (P[c].y - s.y) / d * T,s.z + (P[c].z - s.z) / d * T);
    	db r = get_radius(t);
    	if(r <= now) {
    	    now = r,s = t;
    	}
    	else {
    	    if(exp((now - r) / T) > Rand_p()) {
    		now = r,s = t;
    	    }
    	}
    	T *= delta;
        }
        printf("%.5f
    ",ans);
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        while(scanf("%d",&N) != EOF && N) {
    	for(int i = 1 ; i <= N ; ++i) {
    	    scanf("%lf%lf%lf",&P[i].x,&P[i].y,&P[i].z);
    	}
    	Solve();
        }
    }
    
    
  • 相关阅读:
    自然语言处理1-1 算法时间复杂度
    tensorflow2.0(1):简介
    基于PKCS#11的应用架构
    数字证书应用改造需求调研-2015-10-19
    签名验证工具Aloaha Sign
    PDF签名应用研究小结
    用bcp导sql server数据到excel文件
    无线网卡和有线网卡的嗅探模式的区别
    Tomcat6源代码在Eclipse里调试简要说明
    OpenLDAP 主从复制配置
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9045149.html
Copyright © 2011-2022 走看看