zoukankan      html  css  js  c++  java
  • 【LOJ】#2085. 「NOI2016」循环之美

    题解

    我们要求的其实是这个东西= =
    (sum_{i = 1}^{n}sum_{j = 1}^{n}[(i,j) == 1][(j,k) == 1])
    然后变一下形
    (sum_{j = 1}^{n}[(j,k) == 1]sum_{i = 1}^{n}[(i,j) == 1])
    (sum_{j = 1}^{n}[(j,k) == 1]sum_{i = 1}^{n}sum_{d|i,j}mu(d))
    (sum_{j = 1}^{n}[(j,k) == 1]sum_{d | j} mu(d) lfloor frac{n}{d} floor)
    (sum_{d = 1}^{n} mu(d) lfloor frac{n}{d} floor sum_{y = 1}^{lfloor frac{m}{d} floor}[(yd,k) == 1])
    (sum_{d = 1}^{n} mu(d) lfloor frac{n}{d} floor sum_{y = 1}^{lfloor frac{m}{d} floor}[(d,k) == 1][(y,k) == 1])
    (sum_{d = 1}^{n} [(d,k) == 1] mu(d) lfloor frac{n}{d} floor sum_{y = 1}^{lfloor frac{m}{d} floor}[(y,k) == 1])

    (f(n) = sum_{i = 1}^{n}[(i,k) == 1])
    我们可以预处理(f(1))(f(k))
    那么就有
    (f(n) = lfloorfrac{n}{k} floor f(k) + f(n mod k))
    因为((a,b) == 1) 等价于((a mod b,b) == 1)

    我们现在可以(O(n))解决这个式子了,但是还不够

    我们可以用数论分块处理(lfloor frac{n}{d} floor)(lfloor frac{m}{d} floor)
    我们尝试算
    (sum_{d = 1}^{n} [(d,k) == 1] mu(d))
    (g(n,k) = sum_{d = 1}^{n} [(d,k) == 1] mu(d))
    我们选择一个(k)的质因子(p),然后把(k)表示成(p^{c}q)的形式
    我们从和(q)互质的数里除掉和(p)互质的数

    (g(n,k) = sum_{d = 1}^{n} [(d,q) == 1] mu(d) - sum_{y = 1}^{n} [(yp,q) == 1] mu(yp))
    由于(p)(q)互质,所以我们只需要保证([(y,p) == 1][(y,q) == 1])
    (g(n,k) = sum_{d = 1}^{n} [(d,q) == 1] mu(d) - mu(p) sum_{y = 1}^{n} [(y,p) == 1][(y,q) == 1] mu(y))
    (g(n,k) = sum_{d = 1}^{n} [(d,q) == 1] mu(d) + sum_{y = 1}^{lfloor frac{n}{d} floor} [(y,k) == 1]mu(y))
    (g(n,k) = g(n,q) + g(lfloor frac{n}{p} floor,k))

    边界是(n <= 1)返回(n)(k = 1)返回一个莫比乌斯函数的前缀和,可以杜教筛

    代码

    #include <bits/stdc++.h>
    //#define ivorysi
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define fi first
    #define se second
    #define pb push_back
    #define mp make_pair
    #define eps 1e-8
    #define mo 974711
    #define MAXN 1000000
    #define pii pair<int,int>
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 + c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {putchar('-');x = -x;}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,M,K;
    int mu[MAXN + 5],prime[MAXN + 5],tot,Mu[MAXN + 5];
    bool nonprime[MAXN + 5];
    int f[2005];
    struct HASH {
        struct node {
    	int64 x,v;
    	int next;
        }E[MAXN * 2];
        int head[mo + 5],sumE;
        HASH() {
    	memset(head,0,sizeof(head));sumE = 0;
        }
        void add(int u,int64 x,int64 v) {
    	E[++sumE].x = x;E[sumE].v = v;E[sumE].next = head[u];
    	head[u] = sumE;
        }
        void Insert(int64 x,int64 v) {
    	add(x % mo,x,v);
        }
        int64 Query(int64 x){
    	for(int i = head[x % mo] ; i ; i = E[i].next) {
    	    if(E[i].x == x) return E[i].v;
    	}
    	return -1;
        }
    }H[2];
    int gcd(int a,int b) {
        return b == 0 ? a : gcd(b,a % b);
    }
    int64 calcF(int x) {
        return 1LL * (x / K) * f[K] + f[x % K];
    }
    int64 S(int x) {
        if(x <= MAXN) return Mu[x];
        int64 c = H[0].Query(x);
        if(c != -1) return c;
        int64 res = 0;
        for(int i = 2 ; i <= x ; ++i) {
    	int r = x / (x / i);
    	res = res + 1LL * (r - i + 1) * S(x / i);
    	i = r;
        }
        res = 1 - res;
        H[0].Insert(x,res);
        return res;
    }
    int64 G(int n,int k) {
        if(k == 1) return S(n);
        else if(n <= 1) return n;
        int64 c = H[1].Query(1LL * (n - 1) * K + k);
        if(c != -1) return c;
        for(int i = 1 ; i <= tot ; ++i) {
    	if(k % prime[i] == 0) {
    	    int x = k;
    	    while(x % prime[i] == 0) x /= prime[i];
    	    int64 res = G(n,x) + G(n / prime[i],x * prime[i]);
    	    H[1].Insert(1LL * (n - 1) * K + k,res);
    	    return res;
    	}
        }
        
    }
    void Solve() {
        int t = min(N,M);
        int64 res = 0;
        for(int i = 1 ; i <= t ; ++i) {
    	int r = min(N / (N / i),M / (M / i));
    	int64 s = calcF(M / i) * (N / i);
    	res = res + s * (G(r,K) - G(i - 1,K));
    	i = r;
        }
        out(res);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        read(N);read(M);read(K);
        mu[1] = 1;Mu[1] = 1;
        for(int i = 2 ; i <= MAXN ; ++i) {
    	if(!nonprime[i]) {
    	    prime[++tot] = i;
    	    mu[i] = -1;
    	}
    	for(int j = 1 ; j <= tot ; ++j) {
    	    if(prime[j] > MAXN / i) break;
    	    nonprime[i * prime[j]] = 1;
    	    if(i % prime[j] == 0) break;
    	    else mu[i * prime[j]] = -mu[i];
    	}
    	Mu[i] = Mu[i - 1] + mu[i];
        }
        for(int i = 1 ; i <= K ; ++i) {
    	f[i] = f[i - 1] + (gcd(i,K) == 1);
        }
        Solve();
        return 0;
    }
    
  • 相关阅读:
    PHP构造方法和析构函数
    数组的排序算法
    Swift---- 可选值类型(Optionals) 、 断言(Assertion) 、 集合 、 函数
    Swift----方法 、 下标 、 继承 、 初始化 、 析构方法 、 可选链
    Swift----函数 、 闭包 、 枚举 、 类和结构体 、 属性
    Swift-----类型转换 、 嵌套类型 、 扩展 、 协议 、 访问控制
    程序员创业-行业分析之区分易混淆的基本概念
    MSSQl分布式查询(转)
    iOS8中添加的extensions总结(一)——今日扩展
    Python Function Note
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9158510.html
Copyright © 2011-2022 走看看