zoukankan      html  css  js  c++  java
  • 【LOJ】 #2011. 「SCOI2015」情报传递

    题解

    一写过一交A的一道数据结构水题

    我们发现大于C可以转化为这条路径上有多少个在某天之前开始调查的情报员,离线全部读入,变成树上路径查询某个区间的数出现过多少次,构建一棵根缀的主席树,查询的时候用两边的主席树减掉lca的主席树,然后判断一下lca是否合法

    代码

    #include <bits/stdc++.h>
    //#define ivorysi
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define fi first
    #define se second
    #define pb push_back
    #define mp make_pair
    #define eps 1e-8
    #define mo 974711
    #define MAXN 200005
    #define pii pair<int,int>
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 + c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {putchar('-');x = -x;}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,Q;
    int P[MAXN],ans[MAXN],T[MAXN];
    int X[MAXN],Y[MAXN],C[MAXN],tot,dep[MAXN];
    int pos[MAXN],st[MAXN * 2][20],len[MAXN * 2],cnt;
    struct node {
        int to,next;
    }E[MAXN * 2];
    int head[MAXN],sumE;
    struct Tr_node {
        int lc,rc;
        int siz;
    }tr[MAXN * 20];
    int rt[MAXN],Ncnt;
    
    void add(int u,int v) {
        E[++sumE].to = v;
        E[sumE].next = head[u];
        head[u] = sumE;
    }
    void Insert(const int &x,int &y,int L,int R,int p) {
        y = ++Ncnt;
        tr[y] = tr[x];
        tr[y].siz++;
        if(L == R) return;
        int mid = (L + R) >> 1;
        if(p <= mid) Insert(tr[x].lc,tr[y].lc,L,mid,p);
        else Insert(tr[x].rc,tr[y].rc,mid + 1,R,p);
    }
    void dfs(int u,int fa) {
        dep[u] = dep[fa] + 1;
        Insert(rt[fa],rt[u],1,Q,T[u]);
        st[++cnt][0] = u;
        pos[u] = cnt;
        for(int i = head[u] ; i ; i = E[i].next) {
    	int v = E[i].to;
    	if(v != fa) {
    	    dfs(v,u);
    	    st[++cnt][0] = u;
    	}
        }
    }
    int min_dep(int a,int b) {
        return dep[a] < dep[b] ? a : b;
    }
    int lca(int a,int b) {
        a = pos[a],b = pos[b];
        if(a > b) swap(a,b);
        int l = len[b - a + 1];
        return min_dep(st[a][l],st[b - (1 << l) + 1][l]);
    }
    int Query(int s,int f,int t,int C) {
        if(C < 1) return 0;
        int res = (T[f] <= C);
        f = rt[f],s = rt[s],t = rt[t];
        int L = 1,R = Q;
        while(1) {
    	int mid = (L + R) >> 1;
    	if(R <= C) {
    	    res += tr[s].siz - tr[f].siz + tr[t].siz - tr[f].siz;
    	    break;
    	}
    	if(mid <= C) {
    	    res += tr[tr[s].lc].siz - tr[tr[f].lc].siz + tr[tr[t].lc].siz - tr[tr[f].lc].siz;
    	    L = mid + 1;
    	    s = tr[s].rc;f = tr[f].rc;t = tr[t].rc;
    	}
    	else {
    	    R = mid;
    	    s = tr[s].lc;f = tr[f].lc;t = tr[t].lc;
    	}
    	if(C < L) break;
        }
        return res;
    }
    void Solve() {
        read(N);
        for(int i = 1 ; i <= N ; ++i) {
    	read(P[i]);
    	add(i,P[i]);add(P[i],i);
        }
        read(Q);
        int op,p;
        for(int i = 1 ; i <= Q ; ++i) {
    	read(op);
    	if(op == 1) {
    	    ++tot;
    	    read(X[tot]);read(Y[tot]);read(C[tot]);
    	    C[tot] = i - C[tot] - 1;
    	}
    	else {
    	    read(p);
    	    T[p] = i;
    	}
        }
        for(int i = 1 ; i <= N ; ++i) {
    	if(!T[i]) T[i] = Q; 
        }
        dfs(1,0);
        for(int i = 2 ; i <= cnt;  ++i) len[i] = len[i / 2] + 1;
        for(int j = 1 ; j <= 18 ; ++j) {
    	for(int i = 1 ; i <= cnt ; ++i) {
    	    if(i + (1 << j) - 1 > cnt) break;
    	    st[i][j] = min_dep(st[i][j - 1],st[i + (1 << (j - 1))][j - 1]);
    	}
        }
        for(int i = 1 ; i <= tot ; ++i) {
    	int f = lca(X[i],Y[i]);
    	out(dep[X[i]] + dep[Y[i]] - 2 * dep[f] + 1);space;
    	out(Query(X[i],f,Y[i],C[i]));enter;
        }
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Solve();
        return 0;
    }
    
  • 相关阅读:
    点分治
    SG函数入门
    博弈论入门
    YY的gcd
    整除分块
    gcd约分函数的应用
    C++ 模拟类型(提高)
    C++数论题(博弈论)
    C++(gcd)的应用2。
    C++暴力约分(gcd).
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9159866.html
Copyright © 2011-2022 走看看