题解
有什么LNOI啊,最后都是JLOI罢了
一道非常……懵逼的统计题
当然是容斥,所有的方案 - 至少有一个点坏掉的正方形 + 至少有两个点坏掉的正方形 - 至少有三个点坏掉的正方形 + 至少有四个点坏掉的正方形
总共的方案就是
(sum_{i}^{min(n,m)}i * (n - i + 1) * (m - i + 1))
至少有一个点坏掉的怎么统计,我们考虑这个点在底边,左边有l个坐标右边有r个坐标,上面有h个坐标
设(z = min(l + r,h))
如果高度大于左右两边,那么总共的是(frac{z(z + 1)}{2} + z)
如果有超出的部分,即(z > l),或(z > r)设差值为n,则多出去的就是(frac{n(n + 1)}{2})
然后两两枚举点对,最后统计出来的3个点要除3,统计出来4个点的要除6
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <map>
#define MAXN 100005
#define pii pair<int,int>
#define fi first
#define se second
//#define ivorysi
using namespace std;
typedef long long int64;
int N,M,K;
pii P[2005];
map<pii,bool> mmm;
const int MOD = 100000007;
int64 ans,cnt2,cnt3,cnt4;
void sub(int l,int r,int h) {
int z = min(l + r,h);
ans -= 1LL * z * (z + 3) / 2;
if(z > l) ans += 1LL * (z - l) * (z - l + 1) / 2;
if(z > r) ans += 1LL * (z - r) * (z - r + 1) / 2;
ans = (ans % MOD + MOD) % MOD;
}
bool in_range(int x,int l,int r) {
if(x >= l && x <= r) return 1;
return 0;
}
void check(pii A,pii B) {
if(!in_range(A.fi,0,N) || !in_range(A.se,0,M) || !in_range(B.fi,0,N) || !in_range(B.se,0,M)) return;
++cnt2;
int t = mmm.count(A) + mmm.count(B);
if(t >= 1) ++cnt3;
if(t >= 2) ++cnt4,++cnt3;
}
void Solve() {
scanf("%d%d%d",&N,&M,&K);
for(int i = 1 ; i <= K ; ++i) {
scanf("%d%d",&P[i].fi,&P[i].se);
mmm[P[i]] = 1;
}
for(int i = 1 ; i <= min(N,M) ; ++i) {
ans += 1LL * i * (N - i + 1) % MOD * (M - i + 1) % MOD;
ans %= MOD;
}
for(int i = 1 ; i <= K ; ++i) {
sub(P[i].fi,N - P[i].fi,P[i].se);
sub(P[i].fi,N - P[i].fi,M - P[i].se);
sub(P[i].se,M - P[i].se,P[i].fi);
sub(P[i].se,M - P[i].se,N - P[i].fi);
ans += min(P[i].fi,P[i].se);
ans += min(P[i].fi,M - P[i].se);
ans += min(N - P[i].fi,P[i].se);
ans += min(N - P[i].fi,M - P[i].se);
ans %= MOD;
}
for(int i = 1 ; i <= K ; ++i) {
for(int j = i + 1 ; j <= K ; ++j) {
int dx = P[i].fi - P[j].fi,dy = P[i].se - P[j].se;
check(make_pair(P[i].fi - dy,P[i].se + dx),make_pair(P[j].fi - dy,P[j].se + dx));
check(make_pair(P[i].fi + dy,P[i].se - dx),make_pair(P[j].fi + dy,P[j].se - dx));
if(abs(dx) + abs(dy) & 1) continue;
int x = (dx - dy) >> 1,y = (dx + dy) >> 1;
check(make_pair(P[i].fi - x,P[i].se - y),make_pair(P[j].fi + x,P[j].se + y));
}
}
ans += cnt2 - cnt3 / 3 + cnt4 / 6;
ans = (ans % MOD + MOD) % MOD;
printf("%lld
",ans);
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}