zoukankan      html  css  js  c++  java
  • 【AtCoder】ARC091

    C - Flip,Flip, and Flip......

    只有一个这一个是反面
    只有一行那么除了两边以外都是反面
    否则输出((N - 2)*(M - 2))

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 + c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    
    int64 N,M;
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        read(N);read(M);
        int64 ans = 0;
        if(N > M) swap(N,M);
        if(N == 1 && M == 1) {puts("1");enter;}
        else if(N == 1) {
    	out(M - 2);enter;
        }
        else {
    	out((N - 2) * (M - 2));enter;
        }
        return 0;
    }
    

    D - Remainder Reminder

    枚举模数,显然模数需要大于K
    对于一个模数小于它的(i - K)都合法,如果(K = 0)那么是(i - K - 1)
    对于大于等于它的,我们找到倍数在(lfloorfrac{N}{i} floor - 1)的部分,然后对于(lfloor frac{N}{i} floor cdot i + K)统计到N之间的个数

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define MAXN 100005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 + c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int N,K;
    int64 ans;
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        read(N);read(K);
        for(int i = 1 ; i <= N ; ++i) {
    	if(i <= K) continue;
    	ans += i - K;if(K == 0) --ans;
    	int t = N / i - 1;
    	ans += t * (i - K);
    	t = N / i * i + K;
    	if(t <= N) ans += N - t + 1;
        }
        out(ans);enter;
        return 0;
    }
    

    E - LISDL

    最长下降子序列是由几个最长上升子序列拼出来的

    如果最长上升子序列长度为A
    那么最长下降子序列最多可以有(N - A + 1)
    最少可以有(lceil frac{N}{A} ceil)个,这中间的都可以通过给(B)个最长上升子序列分配个数实现

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <cmath>
    #include <queue>
    #include <ctime>
    #define fi first
    #define se second
    #define pii pair<int,int>
    //#define ivorysi
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define MAXN 300005
    using namespace std;
    typedef long long int64;
    typedef double db;
    typedef unsigned int u32;
    template<class T>
    void read(T &res) {
    	res = 0;T f = 1;char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') f = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9' ) {
    		res = res * 10 - '0' + c;
    		c = getchar();
    	}
    	res *= f;
    }
    template<class T>
    void out(T x) {
    	if(x < 0) {x = -x;putchar('-');}
    	if(x >= 10) {
    		out(x / 10);
    	}
    	putchar('0' + x % 10);
    }
    int N,A,B;
    int cnt[MAXN];
    void Solve() {
    	read(N);read(A);read(B);
    	int d = (N - 1) / A + 1,u = N - A + 1;
    	if(B > u || B < d) {puts("-1");return;}
    	cnt[1] = A;
    	int t = N - A;
    	for(int i = 2 ; i <= B ; ++i) {
    		cnt[i] = t - A >= B - i ? A : t - (B - i);
    		t -= cnt[i];
    	}
    	t = N;
    	for(int i = B ; i >= 1 ; --i) {
    		for(int j = t - cnt[i] + 1 ; j <= t ; ++j) {
    			out(j);space;
    		}
    		t -= cnt[i];
    	}
    	enter;
    }
    int main() {
    #ifdef ivorysi
    	freopen("f1.in","r",stdin);
    #endif
    	Solve();
    	return 0;
    }
    

    F - Strange Nim

    如果你有出色的打表技巧可以通过本题

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <cmath>
    #include <queue>
    #include <ctime>
    #define fi first
    #define se second
    #define pii pair<int,int>
    //#define ivorysi
    #define mp make_pair
    #define pb push_back
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define MAXN 300005
    using namespace std;
    typedef long long int64;
    typedef double db;
    typedef unsigned int u32;
    template<class T>
    void read(T &res) {
    	res = 0;T f = 1;char c = getchar();
    	while(c < '0' || c > '9') {
    		if(c == '-') f = -1;
    		c = getchar();
    	}
    	while(c >= '0' && c <= '9' ) {
    		res = res * 10 - '0' + c;
    		c = getchar();
    	}
    	res *= f;
    }
    template<class T>
    void out(T x) {
    	if(x < 0) {x = -x;putchar('-');}
    	if(x >= 10) {
    		out(x / 10);
    	}
    	putchar('0' + x % 10);
    }
    int N;
    int dfs(int a,int x) {
    	
    	if(a < x) return 0;
    	if(a % x == 0) return a / x;
    	int t = a / x,h = a % x;
    	//out(a);space;out(t);space;out(h);enter;
    	dfs(a - ((h - 1) / (t + 1) + 1) * (t + 1),x);
    }
    void Solve() {
    	read(N);
    	int ans = 0;
    	int a,k;
    	for(int i = 1 ; i <= N ; ++i) {
    		read(a);read(k);
    		ans ^= dfs(a,k);
    	} 
    	if(!ans) puts("Aoki");
    	else puts("Takahashi");
    }
    int main() {
    #ifdef ivorysi
    	freopen("f1.in","r",stdin);
    #endif
    	Solve();
    	return 0;
    }
    
  • 相关阅读:
    列表
    *
    Model/View
    文件
    提示用户输入并获得输入
    编码
    使用静态QT库编译的程序不显示中文
    rm命令
    高阶函数
    jquery checkbox 操作
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9924058.html
Copyright © 2011-2022 走看看