zoukankan      html  css  js  c++  java
  • 10分钟搞懂分层实验原理

    摘要: 想要同一时间做N个实验?想要同一份流量不同实验之间不干扰?想要每个实验都能得到100%流量? 那么你就需要分层实验。

    1. 背景

    • 想要同一时间做N个实验?

    • 想要同一份流量不同实验之间不干扰?

    • 想要每个实验都能得到100%流量?

    那么你就需要分层实验。

    1.1 什么是分层实验

     

    分层实验概念:每个独立实验为一层,层与层之间流量是正交的。
    简单来讲,就是一份流量穿越每层实验时,都会再次随机打散,且随机效果离散。

    所有分层实验的奠基石--Goolge论文

    《Overlapping Experiment Infrastructure More, Better, Faster Experimentation》

    下面将以一个简单例子来解释分层实验核心原理,如果要了解全貌,可以看一下上面论文
    首先来看一下MD5的作为hash的特点,本文以最简单得MD5算法来介绍分层实验。(但一定要知道,实际应用场景复杂,需要我们设计更复杂的hash算法)

    1.2 MD5 特点

    • 压缩性:任意长度的数据,算出的MD5值长度都是固定的。

    • 容易计算:从原数据计算出MD5值很容易。

    • 抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。(重要理论依据!)

    • 弱抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。

    • 强抗碰撞:想找到两个不同的数据,使它们具有相同的MD5值,是非常困难的。


    正是由于上面的特性,MD5也经常作为文件是否被篡改的校验方式。
    所以,
    理论上,如果我们采用MD5计算hash值,对每个cookie 加上某固定字符串(离散因子),求余的结果,就会与不加产生很大区别。加上离散因子后,当数据样本够大的时候,基于概率来看,所有cookie的分桶就会被再次随机化。
    下面我们将通过实际程序来验证。

    2. 实战讲解

    2.1 我们的程序介绍

      • 使用java SecureRandom模拟cookie的获取(随机化cookie,模拟真实场景)

      • hash算法选用上文介绍的MD5。实验分两种:对cookie不做任何处理;对cookie采用增加离散因子离散化

      • 一共三层实验(也就是3个实验),我们会观察第一层2号桶流量在第2层的分配,以及第2层2号桶流量在第3层的分配

      • 如果cookie加入离散因子后,一份流量经过三个实验,按照如下图比例每层平均打散,则证明实验流量正交

    从上图可以看出,即使第1层的2号桶的实验结果比其他几个桶效果好很多,由于流量被离散化,这些效果被均匀分配到第2层。(第3层及后面层类同),这样虽然实验效果被带到了下一层,但是每个桶都得到了相同的影响,对于层内的桶与桶的对比来说,是没有影响的。而我们分析实验数据,恰恰只会针对同一实验内部的基准桶和实验桶。

    =>与原来实验方式区别?

      • 传统方式,我们采用将100%流量分成不同的桶,假设有A,B两个人做实验,为了让他们互不影响,只能约定0-3号桶给A做实验,4-10号桶给B做实验的方式,这样做实验,每个人拿到的只是总流量的一部分。

      • 上面基于MD5分层的例子告诉我们,分层实验可以实现实验与实验之间“互不影响”,这样我们就可以把100%流量给A做实验,同时这100%流量也给B做实验。(这里的A,B举例来说,一个请求,页面做了改版(实验A)、处理逻辑中调用了算法,而算法也做了调整(实验B)),如果采用不采用分层方式,强行将100%流量穿过A,B,那么最终看实验报表时,我们无法区分,是由于改版导致转化率提高,还是算法调整的好,导致转化率提高。

      • package com.yiche.library;
        
        import java.security.MessageDigest;
        import java.security.NoSuchAlgorithmException;
        import java.security.SecureRandom;
        import java.util.ArrayList;
        import java.util.List;
        
        /**
         * @author shihongxing
         * @since 2018-09-04 17:25
         */
        public class MultiLayerExperiment {
            private static String byteArrayToHex(byte[] byteArray) {
                char[] hexDigits = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'};
                char[] resultCharArray = new char[byteArray.length * 2];
                int index = 0;
                for (byte b : byteArray) {
                    resultCharArray[index++] = hexDigits[b >>> 4 & 0xf];
                    resultCharArray[index++] = hexDigits[b & 0xf];
                }
                return new String(resultCharArray);
            }
        
            private static long splitBucket(MessageDigest md5, long val, String shuffle) {
                String key = String.valueOf(val) + ((shuffle == null) ? "" : shuffle);
                byte[] ret = md5.digest(key.getBytes());
                String s = byteArrayToHex(ret);
                long hash = Long.parseUnsignedLong(s.substring(s.length() - 16, s.length() - 1), 16);
                if (hash < 0) {
                    hash = hash * (-1);
                }
                return hash;
            }
        
            private static void exp(SecureRandom sr, MessageDigest md5,
                                    final int LevelOneBucketNumm,/*第一层实验桶数*/
                                    final int LevelTwoBucketNumm,/*第二层实验桶数*/
                                    final int LevelThreeBucketNumm,/*第三层实验桶数*/
                                    final int AllFlows,/*所有流量数*/
                                    String shuffleLevel1,/*第一层实验离散因子*/
                                    String shuffleLevel2,/*第二层实验离散因子*/
                                    String shuffleLevel3/*第三层实验离散因子*/
            ) {
        
                System.out.println("==第1层实验 start!==");
                int[] bucketlevel1 = new int[LevelOneBucketNumm];
                for (int i = 0; i < LevelOneBucketNumm; i++) {
                    bucketlevel1[i] = 0;
                }
                List<Integer> level1bucket2 = new ArrayList<Integer>();
                for (int i = 0; i < AllFlows; i++) {
                    int cookie = sr.nextInt();
                    long hashValue = splitBucket(md5, cookie, shuffleLevel1);
                    int bucket = (int) (hashValue % LevelOneBucketNumm);
                    if (bucket == 2) {
                        /*将2号桶的流量记录下来*/
                        level1bucket2.add(cookie);
                    }
                    bucketlevel1[bucket]++;
                }
                for (int i = 0; i < LevelOneBucketNumm; i++) {
                    System.out.println("1层" + i + "桶:" + bucketlevel1[i]);
                }
                System.out.println("==第1层实验 end!==");
        
                System.out.println("==第1层2号桶流量到达第2层实验 start!==");
                int[] bucketlevel2 = new int[LevelTwoBucketNumm];
                for (int i = 0; i < LevelTwoBucketNumm; ++i) {
                    bucketlevel2[i] = 0;
                }
                List<Integer> level2bucket2 = new ArrayList<Integer>();
                for (int cookie : level1bucket2) {
                    long hashValue = splitBucket(md5, cookie, shuffleLevel2);
                    int bucket = (int) (hashValue % LevelTwoBucketNumm);
                    if (bucket == 2) {
                        /*将第2层2号桶的流量记录下来*/
                        level2bucket2.add(cookie);
                    }
                    bucketlevel2[bucket]++;
                }
                for (int i = 0; i < LevelTwoBucketNumm; i++) {
                    System.out.println("2层" + i + "桶:" + bucketlevel2[i]);
                }
                System.out.println("==第1层2号桶流量到达第2层实验 end!==");
        
                System.out.println("==第2层2号桶流量到达第3层实验 start!==");
                int[] bucketlevel3 = new int[LevelThreeBucketNumm];
                for (int i = 0; i < LevelThreeBucketNumm; ++i) {
                    bucketlevel3[i] = 0;
                }
                for (int cookie : level2bucket2) {
                    long hashValue = splitBucket(md5, cookie, shuffleLevel3);
                    int bucket = (int) (hashValue % LevelThreeBucketNumm);
        
                    bucketlevel3[bucket]++;
                }
                for (int i = 0; i < LevelThreeBucketNumm; i++) {
                    System.out.println("3层" + i + "桶:" + bucketlevel3[i]);
                }
                System.out.println("==第2层2号桶流量到达第3层实验 end!==");
        
            }
        
            public static void main(String[] args) throws NoSuchAlgorithmException {
                SecureRandom sr = SecureRandom.getInstance("SHA1PRNG");/*用来生成随机数*/
                MessageDigest md5 = MessageDigest.getInstance("MD5");/*用来生成MD5值*/
                /*1. 不对cookie做处理,一个cookie在每层实验分到的桶是一致的*/
                exp(sr, md5, 5, 5, 5, 1000000, null, null, null);
                System.out.println("=======================");
                /*2. 每层加一个离散因子,这里只是简单的a,b,c,就可以将多层了流量打散*/
                exp(sr, md5, 5, 5, 5, 1000000, "a", "b", "c");
            }
        }

        2.3 结果分析(重点)

        2.3.1 不对cookie处理,每层实验的分桶号一样

        因为hash%5中的hash保持不变,无论哪层,所以流量一直处于2号桶。

      • ==第1层实验 start!==
        
        1层0桶:199698
        
        1层1桶:199874
        
        1层2桶:199989
        
        1层3桶:200711
        
        1层4桶:199728
        
        ==第1层实验 end!==
        
        ==第1层2号桶流量到达第2层实验 start!==
        
        2层0桶:0
        
        2层1桶:0
        
        2层2桶:199989
        
        2层3桶:0
        
        2层4桶:0
        
        ===第1层2号桶流量到达第2层实验 end!==
        
        ===第2层2号桶流量到达第3层实验 start!==
        
        3层0桶:0
        
        3层1桶:0
        
        3层2桶:199989
        
        3层3桶:0
        
        3层4桶:0
        
        ===第2层2号桶流量到达第3层实验 end!==

        2.3.2. 对cookie做离散处理后,每层流量均匀分配

        如下所示,

        • 流量到达第一层时,流量被均匀分配

        • 第2层实验的2号桶流量到达第3层时,流量均匀分配到第2层的5个桶。

        • 第2层实验的2号桶流量到达第3层时,流量均匀分配到第3层的5个桶。

        • ==第1层实验 start!==
          
          1层0桶:199951
          
          1层1桶:199536
          
          1层2桶:200127
          
          1层3桶:200938
          
          1层4桶:199448
          
          ==第1层实验 end!==
          
          ==第1层2号桶流量到达第2层实验 start!==
          
          2层0桶:40122
          
          2层1桶:40080
          
          2层2桶:39881
          
          2层3桶:40096
          
          2层4桶:39948
          
          ===第1层2号桶流量到达第2层实验 end!==
          
          ===第2层2号桶流量到达第3层实验 start!==
          
          3层0桶:8043
          
          3层1桶:7971
          
          3层2桶:7823
          
          3层3桶:7956
          
          3层4桶:8088
          
          ===第2层2号桶流量到达第3层实验 end!==

          2.4 结论

          我们观测的第2层和第3层流量均来源于第一层的2号桶。
          所以得出结论,第一层的流量在第2层、第3层均得到重新的离散分配。

          3. 总结

          • 随着个性化和算法不断引入我们的应用,同一时间做多个实验需求越来越多,更多人开始使用分层实验。

          • 实际使用中,业务场景复杂,我们会面临需要设计更复杂的hash算法的情况,MD5是一种相对容易,效果也不错的方式。有兴趣可以关注大质数素数hash算法等更加精密优良的算法。同时,分层实验中,为了防止流量影响,还会有“流量隔离”等更复杂的概念。

           
  • 相关阅读:
    instance of type of object.prototype.tostring 区别
    字符串属性及方法大总结
    数组属性及方法大总结
    在Vue中遇到的各种坑 及性能提升
    find、filter、map的区别
    react 的CDN 连接
    react开启一个项目 webpack版本出错
    react中的jsx详细理解
    Vue 在beaforeCreate时获取data中的数据
    vue点击时动态改变样式 ------- 最简单的方法
  • 原文地址:https://www.cnblogs.com/jack-Star/p/9585908.html
Copyright © 2011-2022 走看看