zoukankan      html  css  js  c++  java
  • POJ 1659 Frogs' Neighborhood (havel定理)

    Frogs' Neighborhood
    Time Limit: 5000MS   Memory Limit: 10000K
    Total Submissions: 5819   Accepted: 2498   Special Judge

    Description

    未名湖附近共有N个大小湖泊L1L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊LiLj之间有水路相连,则青蛙FiFj互称为邻居。现在已知每只青蛙的邻居数目x1x2, ..., xn,请你给出每两个湖泊之间的相连关系。

    Input

    第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1x2,..., xn(0 ≤ xi ≤ N)。

    Output

    对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。

    Sample Input

    3
    7
    4 3 1 5 4 2 1 
    6
    4 3 1 4 2 0 
    6
    2 3 1 1 2 1 
    

    Sample Output

    YES
    0 1 0 1 1 0 1 
    1 0 0 1 1 0 0 
    0 0 0 1 0 0 0 
    1 1 1 0 1 1 0 
    1 1 0 1 0 1 0 
    0 0 0 1 1 0 0 
    1 0 0 0 0 0 0 
    
    NO
    
    YES
    0 1 0 0 1 0 
    1 0 0 1 1 0 
    0 0 0 0 0 1 
    0 1 0 0 0 0 
    1 1 0 0 0 0 
    0 0 1 0 0 0 
    

    Source

     
     
     
    下面是直接转载:

    给出一个无向图的顶点度序列{dn},要求判断能否构造出一个简单无向图。若能构造任意一个输出邻接矩阵。

    如果是给定一个图,计算顶点的度非常简单,而这道题恰恰是逆过程,根据顶点的度,构造出一个无向图。

    分析

    贪心的方法是每次把顶点按度大小从大到小排序取出度最大的点Vi,依次和度较大的那些顶点Vj连接,同时减去Vj的度。连接完之后就不再考虑Vi了,剩下的点再次排序然后找度最大的去连接……这样就可以构造出一个可行解。

    判断无解有两个地方,若某次选出的Vi的度比剩下的顶点还多,则无解;若某次Vj的度减成了负数,则无解

    至于什么是Havel定理,上面这个构造过程就是了

    定理的简单证明如下:

    (<=)若d'可简单图化,我们只需把原图中的最大度点和d'中度最大的d1个点连边即可,易得此图必为简单图。

    (=>)若d可简单图化,设得到的简单图为G。分两种情况考虑:

    (a)若G中存在边(V_1,V_2), (V_1,V_3), \ldots, (V_1,V_{d_1+1}),则把这些边除去得简单图G',于是d'可简单图化为G'

    (b)若存在点Vi,Vj使得i=dj,必存在k使得(Vi, Vk)在G中但(Vj,Vk)不在G中。这时我们可以令GG=G-{(Vi,Vk),(V1,Vj)}+{(Vk,Vj),(V1,Vi)}。GG的度序列仍为d,我们又回到了情况(a)。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int VM=20;
    
    int n,map[VM][VM];
    
    struct Lake{
        int id,deg;
    }lake[VM];
    
    int cmp(Lake a,Lake b){
        return a.deg>b.deg;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d",&n);
            for(int i=0;i<n;i++){
                scanf("%d",&lake[i].deg);
                lake[i].id=i;
            }
            int flag=1;
            memset(map,0,sizeof(map));
            while(flag){
                sort(lake,lake+n,cmp);
                /*
                printf("------------\n");
                for(int i=0;i<n;i++)
                    printf("(%d, %d)   ",lake[i].id,lake[i].deg);
                printf("\n");
                printf("------------\n");
                */
                if(lake[0].deg==0)
                    break;
                for(int j=1;j<=lake[0].deg;j++){
                    lake[j].deg--;
                    if(lake[j].deg<0){
                        flag=0;
                        break;
                    }
                    map[lake[0].id][lake[j].id]=1;
                    map[lake[j].id][lake[0].id]=1;
                }
                lake[0].deg=0;
            }
            if(flag){
                printf("YES\n");
                for(int i=0;i<n;i++){
                    printf("%d",map[i][0]);
                    for(int j=1;j<n;j++)
                        printf(" %d",map[i][j]);
                    printf("\n");
                }
            }else
                printf("NO\n");
            if(t!=0)
                printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    RadioButton 用法
    输出复选框选中的文件名 checkbox
    dropdownlist select的用法
    货币的值如何按各个不同国家的习惯来输出
    sqlserver 面试题
    更新数据的脚本
    《C++ Primer》读书笔记—第九章 顺序容器
    《C++ Primer》读书笔记—第八章 IO库
    《C++ Primer》读书笔记—第七章 类
    《C++ Primer》读书笔记—第六章 函数
  • 原文地址:https://www.cnblogs.com/jackge/p/3076831.html
Copyright © 2011-2022 走看看