zoukankan      html  css  js  c++  java
  • POJ 3164 最小树形图

    这题才是最小树形图的基础题,题意就不赘述了,敲这道题的时候发现一个很坑的情况。

    因为平时输入的时候用惯了输入优化,所以对于这些输入我一般都直接上输入优化的,但是这道题让我T了20次之后我才发现输入优化居然是T的原因,我改成scanf后就A掉了。

    比如下面那段代码的注释处,改成输入优化就T了。

    不解,求解答。

    #include <set>
    #include <map>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <iomanip>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define Max 2505
    #define FI first
    #define SE second
    #define ll long long
    #define PI acos(-1.0)
    #define inf 0x7fffffff
    #define LL(x) ( x << 1 )
    #define bug puts("here")
    #define PII pair<int,int>
    #define RR(x) ( x << 1 | 1 )
    #define mp(a,b) make_pair(a,b)
    #define mem(a,b) memset(a,b,sizeof(a))
    #define REP(i,s,t) for( int i = ( s ) ; i <= ( t ) ; ++ i )
    
    using namespace std;
    
    inline void RD(int &ret) {
        char c;
        int flag = 1 ;
        do {
            c = getchar();
            if(c == '-')flag = -1 ;
        } while(c < '0' || c > '9') ;
        ret = c - '0';
        while((c=getchar()) >= '0' && c <= '9')
            ret = ret * 10 + ( c - '0' );
        ret *= flag ;
    }
    inline void OT(int a) {
        if(a >= 10)OT(a / 10) ;
        putchar(a % 10 + '0') ;
    }
    
    inline void RD(double &ret) {
        char c ;
        int flag = 1 ;
        do {
            c = getchar() ;
            if(c == '-')flag = -1 ;
        } while(c < '0' || c > '9') ;
        ll n1 = c - '0' ;
        while((c = getchar()) >= '0' && c <= '9') {
            n1 = n1 * 10 + c - '0' ;
        }
        ll n2 = 1 ;
        while((c = getchar()) >= '0' && c <= '9') {
            n1 = n1 * 10 + c - '0' ;
            n2 *= 10 ;
        }
        ret = flag * (double)n1 / (double)(n2) ;
    }
    /*********************************************/
    
    #define N 1005
    struct PP{
        double x , y ;
    }p[N] ;
    struct kdq{
        int s , e ;
        double l ;
    }ed[N * N] ;
    int n , m ;
    double getdis(int i ,int j){
        return sqrt((p[i].x - p[j].x) * (p[i].x - p[j].x) + (p[i].y - p[j].y) * (p[i].y - p[j].y)) ;
    }
    int pre[N] , vis[N] , id[N] ;
    double in[N] ;
    double Directed_MST(int root ,int V ,int E){
        double ret = 0 ;
        while(1){
            for (int i = 1 ; i < V ; i ++ )in[i] = inf ;
            for (int i = 0 ; i < E ; i ++ ){
                int s = ed[i].s ;
                int e = ed[i].e ;
                if(in[e] > ed[i].l && s != e){
                    pre[e] = s ;
                    in[e] = ed[i].l ;
                }
            }
            for (int i = 1 ; i < V ; i ++ ){
                if(i == root)continue ;
                if(in[i] == inf)return -1 ;
            }
            int cntnode = 1 ;
            mem(vis , -1) ;
            mem(id ,-1) ;
            in[root] = 0 ;
            for (int i = 1 ; i < V ; i ++ ){
                ret += in[i] ;
                int v = i ;
                while(vis[v] != i && id[v] == -1 && v != root){
                    vis[v] = i ;
                    v = pre[v] ;
                }
                if(v != root && id[v] == -1){
                    for (int u = pre[v] ; u != v ; u = pre[u]){
                        id[u] = cntnode ;
                    }
                    id[v] = cntnode ++ ;
                }
            }
            if(cntnode == 1)break ;
            for (int i = 1 ; i < V ; i ++ ){
                if(id[i] == -1)id[i] = cntnode ++ ;
            }
            for (int i = 0 ; i < E ; i ++ ){
                int s = ed[i].s ;
                int e = ed[i].e ;
                ed[i].s = id[s] ;
                ed[i].e = id[e] ;
                if(id[s] != id[e])ed[i].l -= in[e] ;
            }
            V = cntnode ;
            root = id[root] ;
        }
        return ret ;
    }
    
    int main() {
        while(scanf("%d%d",&n,&m) != EOF){
            for (int i = 1 ; i <= n ;i ++ ){
                scanf("%lf%lf",&p[i].x ,&p[i].y) ;
            }
            for (int i = 0 ; i < m ; i ++ ){
    //            RD(ed[i].s) ; RD(ed[i].s) ;
                scanf("%d%d",&ed[i].s ,&ed[i].e) ;
                if(ed[i].s != ed[i].e)//消除自环
                ed[i].l = getdis(ed[i].s , ed[i].e) ;
                else
                ed[i].l = inf ;
            }
            double ans = Directed_MST(1 , n + 1 , m) ;
            if(ans == -1)printf("poor snoopy
    ") ;
            else
            printf("%.2f
    ",ans) ;
        }
        return 0 ;
    }
    


  • 相关阅读:
    SPOJ ROCK
    CodeForces 4C
    实现与研华PCI采集卡通讯
    C#常用数据结构
    使用USBCAN通讯
    COMMTIMEOUTS读写串行口超时
    Multithreading With C# Cookbook---Chapter5---使用C#6.0
    Multithreading With C# Cookbook---Chapter4---使用任务并行库
    Multithreading With C# Cookbook---Chapter3---线程池
    Multithreading With C# Cookbook---Chapter2---线程同步
  • 原文地址:https://www.cnblogs.com/james1207/p/3268852.html
Copyright © 2011-2022 走看看