Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
两个数组,一个存从最左边直到前一个数字的乘积,一个从最右边直到后一个数字的乘积。最后的答案就是这两个数组对应位置相乘。
空间优化,可以直接左边一次把第一个数组乘到最终结果里,右边扫一次把第二个数组乘到最终结果里。
1.空间优化后
class Solution { public int[] productExceptSelf(int[] nums) { if (nums == null || nums.length == 0) { return new int[0]; } int product = 1; int[] result = new int[nums.length]; for (int i = 0; i < nums.length; i++) { result[i] = product; product *= nums[i]; } product = 1; for (int i = nums.length - 1; i >= 0; i--) { result[i] *= product; product *= nums[i]; } return result; } }
2.空间优化前
class Solution { public int[] productExceptSelf(int[] nums) { if (nums == null || nums.length == 0) { return new int[0]; } int[] forward = new int[nums.length]; int[] backward = new int[nums.length]; int[] result = new int[nums.length]; forward[0] = 1; for (int i = 1; i < nums.length; i++) { forward[i] = forward[i - 1] * nums[i - 1]; } backward[nums.length - 1] = 1; for (int i = nums.length - 2; i >= 0; i--) { backward[i] = backward[i + 1] * nums[i + 1]; } for (int i = 0; i < nums.length; i++) { result[i] = forward[i] * backward[i]; } return result; } }