zoukankan      html  css  js  c++  java
  • 隐马尔可夫模型(四)——隐马尔可夫模型的评估问题(后向算法)(转载)

    对于HMM的评估问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。

    先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t 状态为s的前提下,输出序列为Ot+1Ot+2...OT的概率,即

                                        βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)

    归纳过程

        假设仍然有3个状态

                      

        当t=T时,按照定义:时间t  状态q输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N

        当t=T-1时,

                              

                     βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1)  +  ai2*b2(OT)*βT(2)  +  ai3*b3(OT)*βT(3)

          ......

        当t=1时,

           β1(1)=P(O2O3...OT|q2=s1,μ) = a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2) + a13*b3(O2)*β2(3)

           β1(2)=P(O2O3...OT|q2=s1,μ) = a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2) + a23*b3(O2)*β2(3)

           β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1) + a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)

           P(O1O2...OT|μ) =    

                                 =   

                                 =  

    后向算法

        step1 初始化:βT(i)=1, 1≤1≤N

        step2 归纳计算:

                           1≤t≤T-1, 1≤i≤N

        step3 求终结和:

                       P(O|μ)=  

    时间复杂度

        计算某时刻在某个状态下的后向变量需要看后一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。

    程序例证

                  

    后向算法

        计算P(O|M):

        step1:β4(1) = 1          β4(2) = 1          β4(3) = 1

        step2:β3(1) = β4(1)*a11*b1(white) + β4(2)*a12*b2(white) + β4(3)*a13*b3(white)

                         ...

        step3:P(O|M) = π11(1)*b1(O1) + π21(2)*b2(O1) + π31(3)*b3(O1)

    程序代码

    复制代码
    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    int main()
    {
            float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}};
            float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}};
            float result[4][3];
            int list[4] = {0,1,0,1};
            result[3][0] = 1;
            result[3][1] = 1;
            result[3][2] = 1;
            int i,j,k, count = 3;
            for (i=2; i>=0; i--)
            {
                for(j=0; j<=2; j++)
                {
                    result[i][j] = 0;
                    for(k=0; k<=2; k++)
                    {
                       result[i][j] += result[i+1][k] * a[j][k] * b[k][list[count]];
                    }
                }
                count -= 1;
            }
           for (i=0; i<=3; i++)
            {
                for(j=0; j<=2; j++)
                {
                    printf("b[%d][%d] = %f
    ",i+1,j+1,result[i][j]);
    
                }
            }
            printf("backward:%f
    ", result[0][0]*0.2*0.5+result[0][1]*0.4*0.4+result[0][2]*0.4*0.7);
            return 0;
    }
    复制代码

    运行结果

                 

  • 相关阅读:
    支付宝-单笔转账接口
    # Creating Server TCP listening socket *:6379: bind: No such file or directory
    Window 下安装 Redis,配置redis环境变量
    Ajax的跨域(一)
    web人脸识别(二)
    web人脸识别(一)
    给GridView添加列头复选框
    计算两个时间相差多少年月日的sql算法
    MUI下拉加载安卓手机无效的解决方法
    博主回来了!
  • 原文地址:https://www.cnblogs.com/jason-wyf/p/6219110.html
Copyright © 2011-2022 走看看