zoukankan      html  css  js  c++  java
  • CNN误差反传时旋转卷积核的简明分析(转)

      CNN(卷积神经网络)的误差反传(error back propagation)中有一个非常关键的的步骤就是将某个卷积(Convolve)层的误差传到前一层的池化(Pool)层上,因为在CNN中是2D反传,与传统神经网络中的1D反传有点细节上的不同,下面通过一个简单的例子来详细分解一下这个反传步骤。

           假设在一个CNN网络中,P代表某个池化层,K代表卷积核,C代表卷基层,首先来看一下前向(feed forward)计算,从一个池化层经过与卷积核(Kernel)的运算得到卷积层:

           将前向计算的步骤进行分解,可以得到以下公式:

           下面根据这个前向计算的步骤来分解出反向传播的步骤:

           首先要确定误差传播的目的地,从deltaC到deltaP,所以先从deltaP1开始分析

           从前面的前向计算过程中可以找出P1参与了C中哪些元素的计算,并且可以根据对应的前向计算得出反向传播的计算公式:

           依次类推,还有如下公式:

           对于P2

           对于P3

           对于P4

           对于P5

           一直可以推到P9

           总结这9个反向传播的公式到一起:

           进一步可以发现,这9个公式可以用如下的卷积过程来实现:

           至此,从计算的细节上解释了为什么反向传播的时候要把卷积核旋转180°,并采用full的形式来进行卷积运算。

           (注:上文所说的“卷积”被认为是一种不会180°旋转第二个因子的的计算过程,实际上matlab中的的conv2(a,b)会自动180°旋转b,换句话说,在matlab中实现这个步骤的时候不用提前旋转,留给conv2函数自行旋转即可)

  • 相关阅读:
    深入理解 C/C++ sizeof() 运算符
    Luogu2040 | 打开所有的灯 (广搜+状压)
    Intel 8086 标志寄存器及JCC指令表
    Intel 8086 常用汇编指令表
    PTA L2-029 | 特立独行的幸福 (打表+递归)
    C++中为什么要用指针,而不直接使用对象?
    c#中基本类型占用字节数
    c++TXT文件读入
    较为初始的学生成绩管理系统
    C++中各种数据成员及成员函数的定义及使用
  • 原文地址:https://www.cnblogs.com/jason-wyf/p/6285699.html
Copyright © 2011-2022 走看看