Visual DL是由 PaddlePaddle 和 ECharts 合作推出的一款深度学习可视化工具,其能够可视化scalar、参数分布、模型结构、图像等。底层采用C++编写,上层SDK以python为主,也可以使用C++集成到其它平台。
如果你正在寻求深度学习任务设计的可视化工具,可以考虑Visual DL。类似于Tensorboard的在线可视化,支持更多的平台。VisualDL 兼容 ONNX, 通过与 python SDK的结合,VisualDL可以兼容包括 PaddlePaddle、 Pytorch、 MXNet 等在内的大部分主流DNN平台。而Tensorboard目前仅适用于Tensorflow、Pytorch、MXNet等。
本文介绍其最简单的scalar的用法, 用于展示训练测试的误差趋势。
安装
pip install --upgrade visualdl
库文件core.so及demo等python文件被放在site-package目录下面。
可以不从源码编译,而直接使用pip下载的core.so, 但是需要使用protoc将storage.pb转成C++源码文件,因为在使用sdk.h
时会include protobuf生成的头文件。protoc得到的protobuf头文件版本与VisualDL编译所使用的protobuf版本最好一致(VisualDL使用的cmake版本号定义在VisualDL/cmake/external/protobuf.cmake中,如果两个库中使用了不同的版本,在运行时会冲突)。
protoc storage.proto --cpp_out .
使用
Python 中记录 Scalar 示例:
import random
from visualdl import LogWriter
# 指定输出目录,同步周期
logdir = "./log"
logger = LogWriter(logdir, sync_cycle=30)
# 设置此次记录的模式标签: train/test等
with logger.mode("train"):
# 创建名为 'scalars/loss0' 的scalar组件
loss0 = logger.scalar("scalars/loss0")
# 模拟训练过程中的标量数据记录
for step in range(1000):
loss0.add_record(step, random.random())
运行之后会在logdir中生成日志文件,该日志目录中的文件可被VisualDL工具解析,用法与Tensorboard类似。
同功能的C++ SDK使用示例:
#include <cstdlib>
#include <string>
#include "visualdl/logic/sdk.h"
namespace vs = visualdl;
namespace cp = visualdl::components;
int main() {
const std::string dir = "./log";
vs::LogWriter logger(dir, 30);
logger.SetMode("train");
auto tablet = logger.AddTablet("scalars/loss0");
cp::Scalar<float> loss0(tablet);
for (int step = 0; step < 1000; step++) {
float v = (float) std::rand() / RAND_MAX;
loss0.AddRecord(step, v);
}
return 0;
}
caffe1-loss曲线
虽然caffe1的大势已去,但做一些遗留的项目代码研究还是要用的。如果上述的示例能够成功运行,那么在caffe1中记录loss scalar是很容易的。
- 可以使用caffe的python接口获取loss。
- C++中调用VisualDL,如在solver.cpp中记录loss。编译时链接到VisualDL。示例代码在此 frcnn。
由于VisualDL静态链接了特定版本的protobuf,而caffe也需要protobuf,可以修改caffe的编译选项,取消对protobuf的动态链接。
在caffe1中还可以使用VisualDL的image
功能,来可视化任何tensor,或模型生成的图片。通过使用VisualDL工具可以大大方便我们的可视化方式,不必再写额外的脚本独立地来做可视化。
查看board面板
visualDL --logdir
选项:
- --host 绑定地址,如ipv6本地地址
::
- --port 绑定端口
- --model_pb 指定ONNX可交换模型文件
得到的loss曲线如下: