zoukankan      html  css  js  c++  java
  • P3105 [USACO14OPEN]Fair Photography S

    原题

    Solution1

    考虑如果白牛不能变花牛

    如何迅速统计区间牛的数目——利用前缀和统计,设每个牛的 (v=1) ,求 (sum_i=sum_{j=1}^iv_j)

    那么如何迅速判断是否满足白牛数=花牛数——不妨设白牛的 (v=1) ,花牛的 (v=-1) ,那么区间 ((l,r)) 满足条件就是 (sum_r-sum_{l-1}=0)

    此时开一个 (map) 统计 (pre_{sum_i})(pre_i) 代表 (i) 这个值第一次出现的地方, (O(n)) 扫描取 (max{pos_i-pos{_{pre_{sum_i}}}})

    现在取消限制,白牛可以变花牛

    那么区间满足的条件就得发生变化: (sum_r-sum_{l-1}equiv 0pmod 2)

    说人话就是花牛和白牛一一配对后,剩下的白牛需要为偶数,这样才能保证将刚好一半的白牛转化成花牛,满足条件

    此时如何统计答案呢?我们不能用 (O(n^2)) 去枚举→_→

    因为上面用是 (O(n)) 扫描,下面不能更劣,所以也考虑扫描。(这理由好迷,性感理解

    分类讨论一下对于不同的 (sum) 怎么统计答案

    • (sum_i<0) 时,需要找一个 (j) 满足 (sum_i-sum_jgeq0(j<i))

      显然可得 (sum_j=sum_i) 时最优,因为 (sum_i-sum_j>0) 意味着还剩下几只白牛,但再加几只花牛总比白牛变花牛优(ง •_•)ง

      然后用有限制时的 (map)

    • (sum_igeq 0) 时,奇偶还得分开想

      (sum_i) 为偶数时, 前 (i) 只牛都可以取。当 (sum_i) 为奇数时,还需要将第一只牛舍去,因为第一只牛不管是 (pm 1)(sum_i-sum_1) 肯定为偶数,并且最优。

    时间复杂度: (O(nlog n)) 排序 (+) (O(n)) 扫描

    细节:1.因为我们的 (pos_i) 是从坐标轴的 (1) 开始的,所以求 (sum_i>0) 且为偶数的区间长度时答案应该是 (pos_i-pos_1) ,奇数同理。2.记得排序,输入不保证有序

    Code1

    #include<bits/stdc++.h>
    
    using namespace std;
    const int N=100010;
    struct node{
        int pos;
        int v;
    }cow[N];
    int sum[N],ans;
    int n;
    char op[2];
    map<int,int> pre;
    
    inline bool cmp(node a,node y){
        return a.pos<y.pos;
    }
    
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d%s",&cow[i].pos,op);
            if(op[0]=='W') cow[i].v=1;
            else cow[i].v=-1;
        }
        sort(cow+1,cow+n+1,cmp);
        for(int i=1;i<=n;i++){
            sum[i]=sum[i-1]+cow[i].v;
            if(!pre[sum[i]]&&sum[i]<0) pre[sum[i]]=i;
            else if(sum[i]<0) ans=max(ans,cow[i].pos-cow[pre[sum[i]]].pos);
            if(sum[i]%2==0&&sum[i]>=0) ans=max(ans,cow[i].pos-cow[1].pos);
            else if(sum[i]>=0) ans=max(ans,cow[i].pos-cow[2].pos);
        }
        printf("%d
    ",ans);
        return 0;
    }
    

    你以为真的结束了吗?

    不瞎细心的人会发现我上面写的是Solution1,所以现在是Solution2

    Solution2

    受机房奆佬ql12345指点此题可以用二分

    预处理和Solution1的一样

    剩下的就是二分区间长度,然后 (O(n)) 扫描是否存在满足题目条件的区间长度。

    时间复杂度: (O(nlog n))

    Code2

    #include<bits/stdc++.h>
    
    using namespace std;
    const int N=100010;
    int n;
    int sum[N],ans;
    struct node{
        int pos;
        int v;
    }cow[N];
    char op[2];
    
    inline bool cmp(node a,node y){
        return a.pos<y.pos;
    }
    
    inline bool check(int x){
        int r=0;
        for(int l=1;l<=n;l++){
            while(cow[r].pos-cow[l].pos<x&&r<n) r++;
            if(cow[r].pos-cow[l].pos<x) break;
            if(sum[r]-sum[l-1]>=0&&(sum[r]-sum[l-1])%2==0) return true;
        }
        return false;
    }
    
    int main(){
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d%s",&cow[i].pos,op);
            if(op[0]=='W') cow[i].v=1;
            else cow[i].v=-1;
        }
        sort(cow+1,cow+n+1,cmp);
        for(int i=1;i<=n;i++) sum[i]=sum[i-1]+cow[i].v;
        int l=0,r=1e9+1;
        while(r-l>1){
            int mid=(l+r)>>1;
            if(check(mid)) l=mid;
            else r=mid;
        }
        printf("%d
    ",l);
        return 0;
    }
    

    真的结束了_

  • 相关阅读:
    俺自己可以写点代码了
    学姐,孙哥
    Linux/Unix 常用参数使用说明
    DB2 rollforward 命令使用详解
    DB2 create tablespace
    db2 基础语法
    VMWARE虚拟机不显示主机共享的文件夹解决办法
    DB2创建数据库常用参数详解
    从Linux访问Windows共享目录
    Data Flow >> Source >> Error Output >> Error & Truncation: Ignore Failure, Redirect Now, Fail Component
  • 原文地址:https://www.cnblogs.com/jasony/p/13872535.html
Copyright © 2011-2022 走看看