zoukankan      html  css  js  c++  java
  • POJ 2429(GCD&LCM Inverse)

    Description

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.

    Input

    The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

    Output

    For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

    Sample Input

    3 60

    Sample Output

    12 15

    思路:

    其实思路不复杂,题目也短小精炼,但是这个涉及到 Miller_Rabin 和 Pollard_rho 算法

     

    直接上代码:

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<set>
    #include<algorithm>
    #include<vector>
    
    using namespace std;
    #define clc(a,b) memset(a,b,sizeof(a))
    #define inf  (LL)1<<61
    #define LL long long
    
    const int Times = 10;
    const int N = 5500;
    
    LL n, m, ct, cnt;
    LL minn, mina, minb, ans;
    LL fac[N], num[N];
    
    LL gcd(LL a, LL b)
    {
        return b? gcd(b, a % b) : a;
    }
    
    LL multi(LL a, LL b, LL m)
    {
        LL ans = 0;
        a %= m;
        while(b)
        {
            if(b & 1)
            {
                ans = (ans + a) % m;
                b--;
            }
            b >>= 1;
            a = (a + a) % m;
        }
        return ans;
    }
    
    LL quick_mod(LL a, LL b, LL m)
    {
        LL ans = 1;
        a %= m;
        while(b)
        {
            if(b & 1)
            {
                ans = multi(ans, a, m);
                b--;
            }
            b >>= 1;
            a = multi(a, a, m);
        }
        return ans;
    }
    
    bool Miller_Rabin(LL n)
    {
        if(n == 2) return true;
        if(n < 2 || !(n & 1)) return false;
        LL m = n - 1;
        int k = 0;
        while((m & 1) == 0)
        {
            k++;
            m >>= 1;
        }
        for(int i=0; i<Times; i++)
        {
            LL a = rand() % (n - 1) + 1;
            LL x = quick_mod(a, m, n);
            LL y = 0;
            for(int j=0; j<k; j++)
            {
                y = multi(x, x, n);
                if(y == 1 && x != 1 && x != n - 1) return false;
                x = y;
            }
            if(y != 1) return false;
        }
        return true;
    }
    
    LL pollard_rho(LL n, LL c)
    {
        LL i = 1, k = 2;
        LL x = rand() % (n - 1) + 1;
        LL y = x;
        while(true)
        {
            i++;
            x = (multi(x, x, n) + c) % n;
            LL d = gcd((y - x + n) % n, n);
            if(1 < d && d < n) return d;
            if(y == x) return n;
            if(i == k)
            {
                y = x;
                k <<= 1;
            }
        }
    }
    
    void find(LL n, int c)
    {
        if(n == 1) return;
        if(Miller_Rabin(n))
        {
            fac[ct++] = n;
            return ;
        }
        LL p = n;
        LL k = c;
        while(p >= n) p = pollard_rho(p, c--);
        find(p, k);
        find(n / p, k);
    }
    
    void dfs(LL dept, LL tem=1)
    {
        if(dept == cnt)
        {
            LL a = tem;
            LL b = ans / a;
            if(gcd(a, b) == 1)
            {
                a *= n;
                b *= n;
                if(a + b < minn)
                {
                    minn = a + b;
                    mina = a;
                    minb = b;
                }
            }
            return ;
        }
        for(int i=0; i<=num[dept]; i++)
        {
            if(tem > minn) return;
            dfs(dept + 1, tem);
            tem *= fac[dept];
        }
    }
    
    int main()
    {
        while(~scanf("%llu %llu", &n, &m))
        {
            if(n == m)
            {
                printf("%llu %llu
    ",n,m);
                continue;
            }
            minn = inf;
            ct = cnt = 0;
            ans = m / n;
            find(ans, 120);
            sort(fac, fac + ct);
            num[0] = 1;
            int k = 1;
            for(int i=1; i<ct; i++)
            {
                if(fac[i] == fac[i-1])
                    ++num[k-1];
                else
                {
                    num[k] = 1;
                    fac[k++] = fac[i];
                }
            }
            cnt = k;
            dfs(0, 1);
            if(mina > minb) swap(mina, minb);
            printf("%llu %llu
    ",mina, minb);
        }
        return 0;
    }
    

      

    补一个 扩展欧几里得算法

     分析:

    ax1+by1=gcd(a,b)
    =gcd(b,a%b)=bx2+a%by2
    =bx2+(a-(a/b)*b)y2
    =bx2+ay2-(a/b)*by2
    =b(x2-(a/b)*y2)+ay2

      

    待定系数:
    x1=y2
    y1=x2-(a/b)*y2
    // 说明:a/b是取整除法

    代码:

    int ext_gcd(int a,int b,int& x,int& y){
    
      int t,ret;
    
      if (!b){
    
        x=1,y=0;
    
        return a;
    
      }
    
      ret=ext_gcd(b,a%b,x,y);
    
      t=x,x=y,y=t-a/b*y;
    
      return ret;
    
    }
    

      

  • 相关阅读:
    存储过程示例
    对话:关于委托的进一步讨论(转)
    Oracle SQLServer 的随机数问题 .(转)
    AJAX控件之AutoComplete
    穷人与富人的区别
    喜欢(转)
    用sql求得每行行号
    ajax 注册
    如何快速生成100万不重复的8位编号 (转)
    存儲過程的基本語句
  • 原文地址:https://www.cnblogs.com/jaszzz/p/12693721.html
Copyright © 2011-2022 走看看