zoukankan      html  css  js  c++  java
  • POJ 2429(GCD&LCM Inverse)

    Description

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b. But what about the inverse? That is: given GCD and LCM, finding a and b.

    Input

    The input contains multiple test cases, each of which contains two positive integers, the GCD and the LCM. You can assume that these two numbers are both less than 2^63.

    Output

    For each test case, output a and b in ascending order. If there are multiple solutions, output the pair with smallest a + b.

    Sample Input

    3 60

    Sample Output

    12 15

    思路:

    其实思路不复杂,题目也短小精炼,但是这个涉及到 Miller_Rabin 和 Pollard_rho 算法

     

    直接上代码:

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<queue>
    #include<stack>
    #include<cmath>
    #include<set>
    #include<algorithm>
    #include<vector>
    
    using namespace std;
    #define clc(a,b) memset(a,b,sizeof(a))
    #define inf  (LL)1<<61
    #define LL long long
    
    const int Times = 10;
    const int N = 5500;
    
    LL n, m, ct, cnt;
    LL minn, mina, minb, ans;
    LL fac[N], num[N];
    
    LL gcd(LL a, LL b)
    {
        return b? gcd(b, a % b) : a;
    }
    
    LL multi(LL a, LL b, LL m)
    {
        LL ans = 0;
        a %= m;
        while(b)
        {
            if(b & 1)
            {
                ans = (ans + a) % m;
                b--;
            }
            b >>= 1;
            a = (a + a) % m;
        }
        return ans;
    }
    
    LL quick_mod(LL a, LL b, LL m)
    {
        LL ans = 1;
        a %= m;
        while(b)
        {
            if(b & 1)
            {
                ans = multi(ans, a, m);
                b--;
            }
            b >>= 1;
            a = multi(a, a, m);
        }
        return ans;
    }
    
    bool Miller_Rabin(LL n)
    {
        if(n == 2) return true;
        if(n < 2 || !(n & 1)) return false;
        LL m = n - 1;
        int k = 0;
        while((m & 1) == 0)
        {
            k++;
            m >>= 1;
        }
        for(int i=0; i<Times; i++)
        {
            LL a = rand() % (n - 1) + 1;
            LL x = quick_mod(a, m, n);
            LL y = 0;
            for(int j=0; j<k; j++)
            {
                y = multi(x, x, n);
                if(y == 1 && x != 1 && x != n - 1) return false;
                x = y;
            }
            if(y != 1) return false;
        }
        return true;
    }
    
    LL pollard_rho(LL n, LL c)
    {
        LL i = 1, k = 2;
        LL x = rand() % (n - 1) + 1;
        LL y = x;
        while(true)
        {
            i++;
            x = (multi(x, x, n) + c) % n;
            LL d = gcd((y - x + n) % n, n);
            if(1 < d && d < n) return d;
            if(y == x) return n;
            if(i == k)
            {
                y = x;
                k <<= 1;
            }
        }
    }
    
    void find(LL n, int c)
    {
        if(n == 1) return;
        if(Miller_Rabin(n))
        {
            fac[ct++] = n;
            return ;
        }
        LL p = n;
        LL k = c;
        while(p >= n) p = pollard_rho(p, c--);
        find(p, k);
        find(n / p, k);
    }
    
    void dfs(LL dept, LL tem=1)
    {
        if(dept == cnt)
        {
            LL a = tem;
            LL b = ans / a;
            if(gcd(a, b) == 1)
            {
                a *= n;
                b *= n;
                if(a + b < minn)
                {
                    minn = a + b;
                    mina = a;
                    minb = b;
                }
            }
            return ;
        }
        for(int i=0; i<=num[dept]; i++)
        {
            if(tem > minn) return;
            dfs(dept + 1, tem);
            tem *= fac[dept];
        }
    }
    
    int main()
    {
        while(~scanf("%llu %llu", &n, &m))
        {
            if(n == m)
            {
                printf("%llu %llu
    ",n,m);
                continue;
            }
            minn = inf;
            ct = cnt = 0;
            ans = m / n;
            find(ans, 120);
            sort(fac, fac + ct);
            num[0] = 1;
            int k = 1;
            for(int i=1; i<ct; i++)
            {
                if(fac[i] == fac[i-1])
                    ++num[k-1];
                else
                {
                    num[k] = 1;
                    fac[k++] = fac[i];
                }
            }
            cnt = k;
            dfs(0, 1);
            if(mina > minb) swap(mina, minb);
            printf("%llu %llu
    ",mina, minb);
        }
        return 0;
    }
    

      

    补一个 扩展欧几里得算法

     分析:

    ax1+by1=gcd(a,b)
    =gcd(b,a%b)=bx2+a%by2
    =bx2+(a-(a/b)*b)y2
    =bx2+ay2-(a/b)*by2
    =b(x2-(a/b)*y2)+ay2

      

    待定系数:
    x1=y2
    y1=x2-(a/b)*y2
    // 说明:a/b是取整除法

    代码:

    int ext_gcd(int a,int b,int& x,int& y){
    
      int t,ret;
    
      if (!b){
    
        x=1,y=0;
    
        return a;
    
      }
    
      ret=ext_gcd(b,a%b,x,y);
    
      t=x,x=y,y=t-a/b*y;
    
      return ret;
    
    }
    

      

  • 相关阅读:
    字符编码之间的转换 utf-8 , gbk等,(解决中文字符串乱码)
    信号分帧的三种实现方法及时间效率对比
    倒谱Cepstrum本质的理解
    Matlab 中 arburg 函数的理解与实际使用方法
    包络提取的两种方法-希尔伯特变换 和 局部峰值检测
    卡尔曼滤波的自我理解
    随机生成一个长度为n的数组
    JS 数字取整等操作
    vue 跳转路由新开页
    el-form 相关自定义校验
  • 原文地址:https://www.cnblogs.com/jaszzz/p/12693721.html
Copyright © 2011-2022 走看看