zoukankan      html  css  js  c++  java
  • java.util.ArrayList

    package java.util;
    
    import java.util.function.Consumer;
    import java.util.function.Predicate;
    import java.util.function.UnaryOperator;
    
    /**
        ArrayList 简介:
        是一个动态的数组;
        ***重大改变**
        无参构造函数时候,数组的默认长度不在是10,是一个空的数组
        且多线程情况下存在线程不安全
        本文基于JDK 1.8
    
    **/
    
    public class ArrayList<E> extends AbstractList<E>
            implements List<E>, RandomAccess, Cloneable, java.io.Serializable
    {
        private static final long serialVersionUID = 8683452581122892189L;
    
        /**
         * Default initial capacity.
         */
        private static final int DEFAULT_CAPACITY = 10;
    
        /**
         * Shared empty array instance used for empty instances.
         */
        private static final Object[] EMPTY_ELEMENTDATA = {};
    
        /**
         * Shared empty array instance used for default sized empty instances. We
         * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
         * first element is added.
         */
        private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    
        /**
         * The array buffer into which the elements of the ArrayList are stored.
         * The capacity of the ArrayList is the length of this array buffer. Any
         * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
         * will be expanded to DEFAULT_CAPACITY when the first element is added.
         */
        transient Object[] elementData; // non-private to simplify nested class access
    
        /**
         * The size of the ArrayList (the number of elements it contains).
         *
         * @serial
         */
        private int size;
    
        //指定长度时候,生成数组
        public ArrayList(int initialCapacity) {
            if (initialCapacity > 0) {
                this.elementData = new Object[initialCapacity];
            } else if (initialCapacity == 0) {
                this.elementData = EMPTY_ELEMENTDATA;
            } else {
                throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
            }
        }
    
        /**
         * Constructs an empty list with an initial capacity of ten.
         默认时候生成0长度的空数组,这时候并没有初始化,再执行add时候进行了初始化
         */
        public ArrayList() {
            this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
        }
    
        //构造一个具有指定元素的ArrayList
        public ArrayList(Collection<? extends E> c) {
            elementData = c.toArray();
            if ((size = elementData.length) != 0) {
                // c.toArray might (incorrectly) not return Object[] (see 6260652)
                if (elementData.getClass() != Object[].class)
                    elementData = Arrays.copyOf(elementData, size, Object[].class);
            } else {
                // replace with empty array.
                this.elementData = EMPTY_ELEMENTDATA;
            }
        }
    
        /**
        调整长度进行缩容,add时候动态进行扩容,但是在删除时候并没有进行减少容量,
        可以进行所容
         */
        public void trimToSize() {
            modCount++;
            if (size < elementData.length) {
                elementData = (size == 0)
                  ? EMPTY_ELEMENTDATA
                  : Arrays.copyOf(elementData, size);
            }
        }
    
        /**
         * Increases the capacity of this <tt>ArrayList</tt> instance, if
         * necessary, to ensure that it can hold at least the number of elements
         * specified by the minimum capacity argument.
         *
         * @param   minCapacity   the desired minimum capacity
         */
        public void ensureCapacity(int minCapacity) {
            int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                // any size if not default element table
                ? 0
                // larger than default for default empty table. It's already
                // supposed to be at default size.
                : DEFAULT_CAPACITY;
    
            if (minCapacity > minExpand) {
                ensureExplicitCapacity(minCapacity);
            }
        }
        //扩容
        private void ensureCapacityInternal(int minCapacity) {
            //第一次调用add时候进行了判断进行扩容,扩容是10
            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
                minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
            }
    
            ensureExplicitCapacity(minCapacity);
        }
    
        private void ensureExplicitCapacity(int minCapacity) {
            modCount++;
    
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);
        }
    
        /**
         * The maximum size of array to allocate.
         * Some VMs reserve some header words in an array.
         * Attempts to allocate larger arrays may result in
         * OutOfMemoryError: Requested array size exceeds VM limit
         */
        private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
        /**
         * Increases the capacity to ensure that it can hold at least the
         * number of elements specified by the minimum capacity argument.
         *
         * @param minCapacity the desired minimum capacity
         */
         //具体的阔容
         //扩容为现在的1.5倍
        private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1);
            if (newCapacity - minCapacity < 0)
                newCapacity = minCapacity;
            //判断容量是否到达long int 最大临界值  
            if (newCapacity - MAX_ARRAY_SIZE > 0)
                newCapacity = hugeCapacity(minCapacity);
            // minCapacity is usually close to size, so this is a win:
            //再把原来的数组从新复制到扩容后的数组
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
        //检查是否超过最大容量 0x7fffffff ,是否抛出异常 
        private static int hugeCapacity(int minCapacity) {
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
        }
    
        /**
         * Returns the number of elements in this list.
         *
         * @return the number of elements in this list
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this list contains no elements.
         *
         * @return <tt>true</tt> if this list contains no elements
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns <tt>true</tt> if this list contains the specified element.
         * More formally, returns <tt>true</tt> if and only if this list contains
         * at least one element <tt>e</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
         *
         * @param o element whose presence in this list is to be tested
         * @return <tt>true</tt> if this list contains the specified element
         */
        public boolean contains(Object o) {
            return indexOf(o) >= 0;
        }
    
        /**
         * Returns the index of the first occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the lowest index <tt>i</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int indexOf(Object o) {
            if (o == null) {
                for (int i = 0; i < size; i++)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = 0; i < size; i++)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
    
        /**
         * Returns the index of the last occurrence of the specified element
         * in this list, or -1 if this list does not contain the element.
         * More formally, returns the highest index <tt>i</tt> such that
         * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
         * or -1 if there is no such index.
         */
        public int lastIndexOf(Object o) {
            if (o == null) {
                for (int i = size-1; i >= 0; i--)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = size-1; i >= 0; i--)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
    
        /**
         * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
         * elements themselves are not copied.)
         *
         * @return a clone of this <tt>ArrayList</tt> instance
         */
        public Object clone() {
            try {
                ArrayList<?> v = (ArrayList<?>) super.clone();
                v.elementData = Arrays.copyOf(elementData, size);
                v.modCount = 0;
                return v;
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
        }
    
        /**
         * Returns an array containing all of the elements in this list
         * in proper sequence (from first to last element).
         *
         * <p>The returned array will be "safe" in that no references to it are
         * maintained by this list.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         *
         * <p>This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this list in
         *         proper sequence
         */
        public Object[] toArray() {
            return Arrays.copyOf(elementData, size);
        }
    
        /**
         * Returns an array containing all of the elements in this list in proper
         * sequence (from first to last element); the runtime type of the returned
         * array is that of the specified array.  If the list fits in the
         * specified array, it is returned therein.  Otherwise, a new array is
         * allocated with the runtime type of the specified array and the size of
         * this list.
         *
         * <p>If the list fits in the specified array with room to spare
         * (i.e., the array has more elements than the list), the element in
         * the array immediately following the end of the collection is set to
         * <tt>null</tt>.  (This is useful in determining the length of the
         * list <i>only</i> if the caller knows that the list does not contain
         * any null elements.)
         *
         * @param a the array into which the elements of the list are to
         *          be stored, if it is big enough; otherwise, a new array of the
         *          same runtime type is allocated for this purpose.
         * @return an array containing the elements of the list
         * @throws ArrayStoreException if the runtime type of the specified array
         *         is not a supertype of the runtime type of every element in
         *         this list
         * @throws NullPointerException if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            if (a.length < size)
                // Make a new array of a's runtime type, but my contents:
                return (T[]) Arrays.copyOf(elementData, size, a.getClass());
            System.arraycopy(elementData, 0, a, 0, size);
            if (a.length > size)
                a[size] = null;
            return a;
        }
    
        // Positional Access Operations
    
        @SuppressWarnings("unchecked")
        E elementData(int index) {
            return (E) elementData[index];
        }
    
        /**
         * Returns the element at the specified position in this list.
         *
         * @param  index index of the element to return
         * @return the element at the specified position in this list
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E get(int index) {
            rangeCheck(index);
    
            return elementData(index);
        }
    
        /**
         * Replaces the element at the specified position in this list with
         * the specified element.
         *
         * @param index index of the element to replace
         * @param element element to be stored at the specified position
         * @return the element previously at the specified position
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public E set(int index, E element) {
            rangeCheck(index);
    
            E oldValue = elementData(index);
            elementData[index] = element;
            return oldValue;
        }
    
        /**
         * Appends the specified element to the end of this list.
         *
         * @param e element to be appended to this list
         * @return <tt>true</tt> (as specified by {@link Collection#add})
            在数组的结尾增加一个元素
         */
        public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            elementData[size++] = e;
            return true;
        }
    
        /**
         * Inserts the specified element at the specified position in this
         * list. Shifts the element currently at that position (if any) and
         * any subsequent elements to the right (adds one to their indices).
         *
         * @param index index at which the specified element is to be inserted
         * @param element element to be inserted
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public void add(int index, E element) {
            //检查是否越界
            rangeCheckForAdd(index);
            //扩容
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            //移动数组
           System.arraycopy(elementData, index, elementData, index + 1,
                             size - index);
            elementData[index] = element;
            size++;
        }
    
        //删除
        public E remove(int index) {
            //检查是否越界
            rangeCheck(index);
            modCount++;
            E oldValue = elementData(index);
            //计算要复制的元素的数量
            int numMoved = size - index - 1;
            if (numMoved > 0)
                //开始复制
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
    
            return oldValue;
        }
    
       //删除
        public boolean remove(Object o) {
            if (o == null) {
                for (int index = 0; index < size; index++)
                    if (elementData[index] == null) {
                        fastRemove(index);
                        return true;
                    }
            } else {
                for (int index = 0; index < size; index++)
                    if (o.equals(elementData[index])) {
                        fastRemove(index);
                        return true;
                    }
            }
            return false;
        }
    
        /*
                和角标删除方式相似 最后都是要从新复制数组
         */
        private void fastRemove(int index) {
            modCount++;
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
        }
    
        /**
         * Removes all of the elements from this list.  The list will
         * be empty after this call returns.
         */
        public void clear() {
            modCount++;
    
            // clear to let GC do its work
            for (int i = 0; i < size; i++)
                elementData[i] = null;
    
            size = 0;
        }
    
        /**
         * Appends all of the elements in the specified collection to the end of
         * this list, in the order that they are returned by the
         * specified collection's Iterator.  The behavior of this operation is
         * undefined if the specified collection is modified while the operation
         * is in progress.  (This implies that the behavior of this call is
         * undefined if the specified collection is this list, and this
         * list is nonempty.)
         *
         * @param c collection containing elements to be added to this list
         * @return <tt>true</tt> if this list changed as a result of the call
         * @throws NullPointerException if the specified collection is null
         */
        public boolean addAll(Collection<? extends E> c) {
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
            System.arraycopy(a, 0, elementData, size, numNew);
            size += numNew;
            return numNew != 0;
        }
    
        /**
         * Inserts all of the elements in the specified collection into this
         * list, starting at the specified position.  Shifts the element
         * currently at that position (if any) and any subsequent elements to
         * the right (increases their indices).  The new elements will appear
         * in the list in the order that they are returned by the
         * specified collection's iterator.
         *
         * @param index index at which to insert the first element from the
         *              specified collection
         * @param c collection containing elements to be added to this list
         * @return <tt>true</tt> if this list changed as a result of the call
         * @throws IndexOutOfBoundsException {@inheritDoc}
         * @throws NullPointerException if the specified collection is null
         */
        public boolean addAll(int index, Collection<? extends E> c) {
            rangeCheckForAdd(index);
    
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
    
            int numMoved = size - index;
            if (numMoved > 0)
                System.arraycopy(elementData, index, elementData, index + numNew,
                                 numMoved);
    
            System.arraycopy(a, 0, elementData, index, numNew);
            size += numNew;
            return numNew != 0;
        }
    
        /**
         * Removes from this list all of the elements whose index is between
         * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
         * Shifts any succeeding elements to the left (reduces their index).
         * This call shortens the list by {@code (toIndex - fromIndex)} elements.
         * (If {@code toIndex==fromIndex}, this operation has no effect.)
         *
         * @throws IndexOutOfBoundsException if {@code fromIndex} or
         *         {@code toIndex} is out of range
         *         ({@code fromIndex < 0 ||
         *          fromIndex >= size() ||
         *          toIndex > size() ||
         *          toIndex < fromIndex})
         */
        protected void removeRange(int fromIndex, int toIndex) {
            modCount++;
            int numMoved = size - toIndex;
            System.arraycopy(elementData, toIndex, elementData, fromIndex,
                             numMoved);
    
            // clear to let GC do its work
            int newSize = size - (toIndex-fromIndex);
            for (int i = newSize; i < size; i++) {
                elementData[i] = null;
            }
            size = newSize;
        }
    
        /**
         * Checks if the given index is in range.  If not, throws an appropriate
         * runtime exception.  This method does *not* check if the index is
         * negative: It is always used immediately prior to an array access,
         * which throws an ArrayIndexOutOfBoundsException if index is negative.
         */
        private void rangeCheck(int index) {
            if (index >= size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * A version of rangeCheck used by add and addAll.
         */
        private void rangeCheckForAdd(int index) {
            if (index > size || index < 0)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
    
        /**
         * Constructs an IndexOutOfBoundsException detail message.
         * Of the many possible refactorings of the error handling code,
         * this "outlining" performs best with both server and client VMs.
         */
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
    
        /**
         * Removes from this list all of its elements that are contained in the
         * specified collection.
         *
         * @param c collection containing elements to be removed from this list
         * @return {@code true} if this list changed as a result of the call
         * @throws ClassCastException if the class of an element of this list
         *         is incompatible with the specified collection
         * (<a href="Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if this list contains a null element and the
         *         specified collection does not permit null elements
         * (<a href="Collection.html#optional-restrictions">optional</a>),
         *         or if the specified collection is null
         * @see Collection#contains(Object)
         */
        public boolean removeAll(Collection<?> c) {
            Objects.requireNonNull(c);
            return batchRemove(c, false);
        }
    
        /**
         * Retains only the elements in this list that are contained in the
         * specified collection.  In other words, removes from this list all
         * of its elements that are not contained in the specified collection.
         *
         * @param c collection containing elements to be retained in this list
         * @return {@code true} if this list changed as a result of the call
         * @throws ClassCastException if the class of an element of this list
         *         is incompatible with the specified collection
         * (<a href="Collection.html#optional-restrictions">optional</a>)
         * @throws NullPointerException if this list contains a null element and the
         *         specified collection does not permit null elements
         * (<a href="Collection.html#optional-restrictions">optional</a>),
         *         or if the specified collection is null
         * @see Collection#contains(Object)
         */
        public boolean retainAll(Collection<?> c) {
            Objects.requireNonNull(c);
            return batchRemove(c, true);
        }
    
        private boolean batchRemove(Collection<?> c, boolean complement) {
            final Object[] elementData = this.elementData;
            int r = 0, w = 0;
            boolean modified = false;
            try {
                for (; r < size; r++)
                    if (c.contains(elementData[r]) == complement)
                        elementData[w++] = elementData[r];
            } finally {
                // Preserve behavioral compatibility with AbstractCollection,
                // even if c.contains() throws.
                if (r != size) {
                    System.arraycopy(elementData, r,
                                     elementData, w,
                                     size - r);
                    w += size - r;
                }
                if (w != size) {
                    // clear to let GC do its work
                    for (int i = w; i < size; i++)
                        elementData[i] = null;
                    modCount += size - w;
                    size = w;
                    modified = true;
                }
            }
            return modified;
        }
    
        /**
         * Save the state of the <tt>ArrayList</tt> instance to a stream (that
         * is, serialize it).
         *
         * @serialData The length of the array backing the <tt>ArrayList</tt>
         *             instance is emitted (int), followed by all of its elements
         *             (each an <tt>Object</tt>) in the proper order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
            // Write out element count, and any hidden stuff
            int expectedModCount = modCount;
            s.defaultWriteObject();
    
            // Write out size as capacity for behavioural compatibility with clone()
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (int i=0; i<size; i++) {
                s.writeObject(elementData[i]);
            }
    
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
        /**
         * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            elementData = EMPTY_ELEMENTDATA;
    
            // Read in size, and any hidden stuff
            s.defaultReadObject();
    
            // Read in capacity
            s.readInt(); // ignored
    
            if (size > 0) {
                // be like clone(), allocate array based upon size not capacity
                ensureCapacityInternal(size);
    
                Object[] a = elementData;
                // Read in all elements in the proper order.
                for (int i=0; i<size; i++) {
                    a[i] = s.readObject();
                }
            }
        }
    
        /**
         * Returns a list iterator over the elements in this list (in proper
         * sequence), starting at the specified position in the list.
         * The specified index indicates the first element that would be
         * returned by an initial call to {@link ListIterator#next next}.
         * An initial call to {@link ListIterator#previous previous} would
         * return the element with the specified index minus one.
         *
         * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @throws IndexOutOfBoundsException {@inheritDoc}
         */
        public ListIterator<E> listIterator(int index) {
            if (index < 0 || index > size)
                throw new IndexOutOfBoundsException("Index: "+index);
            return new ListItr(index);
        }
    
        /**
         * Returns a list iterator over the elements in this list (in proper
         * sequence).
         *
         * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @see #listIterator(int)
         */
        public ListIterator<E> listIterator() {
            return new ListItr(0);
        }
    
        /**
         * Returns an iterator over the elements in this list in proper sequence.
         *
         * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
         *
         * @return an iterator over the elements in this list in proper sequence
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        /**
         * An optimized version of AbstractList.Itr
         */
        private class Itr implements Iterator<E> {
            int cursor;       // index of next element to return
            int lastRet = -1; // index of last element returned; -1 if no such
            int expectedModCount = modCount;
    
            public boolean hasNext() {
                return cursor != size;
            }
    
            @SuppressWarnings("unchecked")
            public E next() {
                checkForComodification();
                int i = cursor;
                if (i >= size)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i + 1;
                return (E) elementData[lastRet = i];
            }
    
            public void remove() {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.remove(lastRet);
                    cursor = lastRet;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            @Override
            @SuppressWarnings("unchecked")
            public void forEachRemaining(Consumer<? super E> consumer) {
                Objects.requireNonNull(consumer);
                final int size = ArrayList.this.size;
                int i = cursor;
                if (i >= size) {
                    return;
                }
                final Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    consumer.accept((E) elementData[i++]);
                }
                // update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
            //这是一种快速失败机制
            /**
                    在迭代器中的 add 、remove 、 next等方法中都调用了此方法,
                    判断 modCount 和 expectedModCount是否相等,
                    来决定是否抛出异常;
                防止多个线程同时在对一个list进行增加或者删除的动作    
                    
            **/
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    
        /**
         * An optimized version of AbstractList.ListItr
         */
        private class ListItr extends Itr implements ListIterator<E> {
            ListItr(int index) {
                super();
                cursor = index;
            }
    
            public boolean hasPrevious() {
                return cursor != 0;
            }
    
            public int nextIndex() {
                return cursor;
            }
    
            public int previousIndex() {
                return cursor - 1;
            }
    
            @SuppressWarnings("unchecked")
            public E previous() {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i;
                return (E) elementData[lastRet = i];
            }
    
            public void set(E e) {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.set(lastRet, e);
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            public void add(E e) {
                checkForComodification();
    
                try {
                    int i = cursor;
                    ArrayList.this.add(i, e);
                    cursor = i + 1;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    
        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, 0, fromIndex, toIndex);
        }
    
        static void subListRangeCheck(int fromIndex, int toIndex, int size) {
            if (fromIndex < 0)
                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
            if (toIndex > size)
                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
            if (fromIndex > toIndex)
                throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                                   ") > toIndex(" + toIndex + ")");
        }
    
        private class SubList extends AbstractList<E> implements RandomAccess {
            private final AbstractList<E> parent;
            private final int parentOffset;
            private final int offset;
            int size;
    
            SubList(AbstractList<E> parent,
                    int offset, int fromIndex, int toIndex) {
                this.parent = parent;
                this.parentOffset = fromIndex;
                this.offset = offset + fromIndex;
                this.size = toIndex - fromIndex;
                this.modCount = ArrayList.this.modCount;
            }
    
            public E set(int index, E e) {
                rangeCheck(index);
                checkForComodification();
                E oldValue = ArrayList.this.elementData(offset + index);
                ArrayList.this.elementData[offset + index] = e;
                return oldValue;
            }
    
            public E get(int index) {
                rangeCheck(index);
                checkForComodification();
                return ArrayList.this.elementData(offset + index);
            }
    
            public int size() {
                checkForComodification();
                return this.size;
            }
    
            public void add(int index, E e) {
                rangeCheckForAdd(index);
                checkForComodification();
                parent.add(parentOffset + index, e);
                this.modCount = parent.modCount;
                this.size++;
            }
    
            public E remove(int index) {
                rangeCheck(index);
                checkForComodification();
                E result = parent.remove(parentOffset + index);
                this.modCount = parent.modCount;
                this.size--;
                return result;
            }
    
            protected void removeRange(int fromIndex, int toIndex) {
                checkForComodification();
                parent.removeRange(parentOffset + fromIndex,
                                   parentOffset + toIndex);
                this.modCount = parent.modCount;
                this.size -= toIndex - fromIndex;
            }
    
            public boolean addAll(Collection<? extends E> c) {
                return addAll(this.size, c);
            }
    
            public boolean addAll(int index, Collection<? extends E> c) {
                rangeCheckForAdd(index);
                int cSize = c.size();
                if (cSize==0)
                    return false;
    
                checkForComodification();
                parent.addAll(parentOffset + index, c);
                this.modCount = parent.modCount;
                this.size += cSize;
                return true;
            }
    
            public Iterator<E> iterator() {
                return listIterator();
            }
    
            public ListIterator<E> listIterator(final int index) {
                checkForComodification();
                rangeCheckForAdd(index);
                final int offset = this.offset;
    
                return new ListIterator<E>() {
                    int cursor = index;
                    int lastRet = -1;
                    int expectedModCount = ArrayList.this.modCount;
    
                    public boolean hasNext() {
                        return cursor != SubList.this.size;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E next() {
                        checkForComodification();
                        int i = cursor;
                        if (i >= SubList.this.size)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i + 1;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    public boolean hasPrevious() {
                        return cursor != 0;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E previous() {
                        checkForComodification();
                        int i = cursor - 1;
                        if (i < 0)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    @SuppressWarnings("unchecked")
                    public void forEachRemaining(Consumer<? super E> consumer) {
                        Objects.requireNonNull(consumer);
                        final int size = SubList.this.size;
                        int i = cursor;
                        if (i >= size) {
                            return;
                        }
                        final Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length) {
                            throw new ConcurrentModificationException();
                        }
                        while (i != size && modCount == expectedModCount) {
                            consumer.accept((E) elementData[offset + (i++)]);
                        }
                        // update once at end of iteration to reduce heap write traffic
                        lastRet = cursor = i;
                        checkForComodification();
                    }
    
                    public int nextIndex() {
                        return cursor;
                    }
    
                    public int previousIndex() {
                        return cursor - 1;
                    }
    
                    public void remove() {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            SubList.this.remove(lastRet);
                            cursor = lastRet;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void set(E e) {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            ArrayList.this.set(offset + lastRet, e);
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void add(E e) {
                        checkForComodification();
    
                        try {
                            int i = cursor;
                            SubList.this.add(i, e);
                            cursor = i + 1;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    final void checkForComodification() {
                        if (expectedModCount != ArrayList.this.modCount)
                            throw new ConcurrentModificationException();
                    }
                };
            }
    
            public List<E> subList(int fromIndex, int toIndex) {
                subListRangeCheck(fromIndex, toIndex, size);
                return new SubList(this, offset, fromIndex, toIndex);
            }
    
            private void rangeCheck(int index) {
                if (index < 0 || index >= this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private void rangeCheckForAdd(int index) {
                if (index < 0 || index > this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private String outOfBoundsMsg(int index) {
                return "Index: "+index+", Size: "+this.size;
            }
    
            private void checkForComodification() {
                if (ArrayList.this.modCount != this.modCount)
                    throw new ConcurrentModificationException();
            }
    
            public Spliterator<E> spliterator() {
                checkForComodification();
                return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                                   offset + this.size, this.modCount);
            }
        }
    
        @Override
        public void forEach(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            final int expectedModCount = modCount;
            @SuppressWarnings("unchecked")
            final E[] elementData = (E[]) this.elementData;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                action.accept(elementData[i]);
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
        /**
         * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
         * and <em>fail-fast</em> {@link Spliterator} over the elements in this
         * list.
         *
         * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
         * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
         * Overriding implementations should document the reporting of additional
         * characteristic values.
         *
         * @return a {@code Spliterator} over the elements in this list
         * @since 1.8
         */
        @Override
        public Spliterator<E> spliterator() {
            return new ArrayListSpliterator<>(this, 0, -1, 0);
        }
    
        /** Index-based split-by-two, lazily initialized Spliterator */
        static final class ArrayListSpliterator<E> implements Spliterator<E> {
    
            /*
             * If ArrayLists were immutable, or structurally immutable (no
             * adds, removes, etc), we could implement their spliterators
             * with Arrays.spliterator. Instead we detect as much
             * interference during traversal as practical without
             * sacrificing much performance. We rely primarily on
             * modCounts. These are not guaranteed to detect concurrency
             * violations, and are sometimes overly conservative about
             * within-thread interference, but detect enough problems to
             * be worthwhile in practice. To carry this out, we (1) lazily
             * initialize fence and expectedModCount until the latest
             * point that we need to commit to the state we are checking
             * against; thus improving precision.  (This doesn't apply to
             * SubLists, that create spliterators with current non-lazy
             * values).  (2) We perform only a single
             * ConcurrentModificationException check at the end of forEach
             * (the most performance-sensitive method). When using forEach
             * (as opposed to iterators), we can normally only detect
             * interference after actions, not before. Further
             * CME-triggering checks apply to all other possible
             * violations of assumptions for example null or too-small
             * elementData array given its size(), that could only have
             * occurred due to interference.  This allows the inner loop
             * of forEach to run without any further checks, and
             * simplifies lambda-resolution. While this does entail a
             * number of checks, note that in the common case of
             * list.stream().forEach(a), no checks or other computation
             * occur anywhere other than inside forEach itself.  The other
             * less-often-used methods cannot take advantage of most of
             * these streamlinings.
             */
    
            private final ArrayList<E> list;
            private int index; // current index, modified on advance/split
            private int fence; // -1 until used; then one past last index
            private int expectedModCount; // initialized when fence set
    
            /** Create new spliterator covering the given  range */
            ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                                 int expectedModCount) {
                this.list = list; // OK if null unless traversed
                this.index = origin;
                this.fence = fence;
                this.expectedModCount = expectedModCount;
            }
    
            private int getFence() { // initialize fence to size on first use
                int hi; // (a specialized variant appears in method forEach)
                ArrayList<E> lst;
                if ((hi = fence) < 0) {
                    if ((lst = list) == null)
                        hi = fence = 0;
                    else {
                        expectedModCount = lst.modCount;
                        hi = fence = lst.size;
                    }
                }
                return hi;
            }
    
            public ArrayListSpliterator<E> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid) ? null : // divide range in half unless too small
                    new ArrayListSpliterator<E>(list, lo, index = mid,
                                                expectedModCount);
            }
    
            public boolean tryAdvance(Consumer<? super E> action) {
                if (action == null)
                    throw new NullPointerException();
                int hi = getFence(), i = index;
                if (i < hi) {
                    index = i + 1;
                    @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                    action.accept(e);
                    if (list.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
                return false;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                int i, hi, mc; // hoist accesses and checks from loop
                ArrayList<E> lst; Object[] a;
                if (action == null)
                    throw new NullPointerException();
                if ((lst = list) != null && (a = lst.elementData) != null) {
                    if ((hi = fence) < 0) {
                        mc = lst.modCount;
                        hi = lst.size;
                    }
                    else
                        mc = expectedModCount;
                    if ((i = index) >= 0 && (index = hi) <= a.length) {
                        for (; i < hi; ++i) {
                            @SuppressWarnings("unchecked") E e = (E) a[i];
                            action.accept(e);
                        }
                        if (lst.modCount == mc)
                            return;
                    }
                }
                throw new ConcurrentModificationException();
            }
    
            public long estimateSize() {
                return (long) (getFence() - index);
            }
    
            public int characteristics() {
                return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
            }
        }
    
        @Override
        public boolean removeIf(Predicate<? super E> filter) {
            Objects.requireNonNull(filter);
            // figure out which elements are to be removed
            // any exception thrown from the filter predicate at this stage
            // will leave the collection unmodified
            int removeCount = 0;
            final BitSet removeSet = new BitSet(size);
            final int expectedModCount = modCount;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                @SuppressWarnings("unchecked")
                final E element = (E) elementData[i];
                if (filter.test(element)) {
                    removeSet.set(i);
                    removeCount++;
                }
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
    
            // shift surviving elements left over the spaces left by removed elements
            final boolean anyToRemove = removeCount > 0;
            if (anyToRemove) {
                final int newSize = size - removeCount;
                for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                    i = removeSet.nextClearBit(i);
                    elementData[j] = elementData[i];
                }
                for (int k=newSize; k < size; k++) {
                    elementData[k] = null;  // Let gc do its work
                }
                this.size = newSize;
                if (modCount != expectedModCount) {
                    throw new ConcurrentModificationException();
                }
                modCount++;
            }
    
            return anyToRemove;
        }
    
        @Override
        @SuppressWarnings("unchecked")
        public void replaceAll(UnaryOperator<E> operator) {
            Objects.requireNonNull(operator);
            final int expectedModCount = modCount;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                elementData[i] = operator.apply((E) elementData[i]);
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }
    
        @Override
        @SuppressWarnings("unchecked")
        public void sort(Comparator<? super E> c) {
            final int expectedModCount = modCount;
            Arrays.sort((E[]) elementData, 0, size, c);
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }
    }
    View Code

    上面的代码都是截取于JDK1.8中,

    代码中操作数组后反复的用到System.arraycopy  来进行复制数组到新数组中去:

    其实这里就是解释了为什么ArrayList 不适合频繁插入和删除操作?

    每次插入时候都要进行一个判断,数量不够时候还要进行扩容,在扩容之后需要对老数组进行重新复制进去,这样导致效率很低!

    数组的结构;

    对扩容画图展示:

    List<Integer> lists = new ArrayList<Integer>(); lists.add(8);

    初始化时候调用add方法后才开始初始化,初始化默认长度是10

     List<Integer> lists = new ArrayList<Integer>(6); lists.add(8);

    第二种:当传入长度后初始化时候,会初始化为当前你需要的长度

     

     

     

     ArrayList 最大的特点就是查询快!

                    缺点就是增删慢  !

    梦想一定要有,万一实现了!

  • 相关阅读:
    数据可视化 —— 数据流图(Data Flow Diagram)
    TensorFlow 实战(四)—— tensor 的认识
    数据集(benchmark)、常用数据集的解析(cifar-10、)
    HDU--杭电--4504--威威猫系列故事——篮球梦--DP
    android打包apk时混淆遇到的问题
    C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
    按 Eclipse 开发喜好重新布置 cocos2dx 目录层次
    HDU--杭电--4502--吉哥系列故事——临时工计划--背包--01背包
    (step6.3.2)hdu 1068(Girls and Boys——二分图的最大独立集)
    flashcache中应用device mapper机制
  • 原文地址:https://www.cnblogs.com/java-synchronized/p/7070667.html
Copyright © 2011-2022 走看看