/* NYOJ69 阶乘数位长度
http://acm.nyist.net/JudgeOnline/problem.php?pid=69
数的长度
时间限制:3000 ms | 内存限制:65535 KB
难度:1
描述
N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?
输入
首行输入n,表示有多少组测试数据(n<10)
随后n行每行输入一组测试数据 N( 0 < N < 1000000 )
输出
对于每个数N,输出N!的(十进制)位数。
样例输入
3
1
3
32000样例输出
1
1
130271
来源
ACM教程
上传者
rooot
* 方法一:
*可设想n!的结果是不大于10的M次幂的数,即n!<=10^M(10的M次方),则不小于M的最小整数就是 n!的位数,对该式两边取对数,有 M =log10^n! 即:M = log10^1+log10^2+log10^3...+log10^n 循环求和,就能算得M值,
该M是n!的精确位数。当n比较大的时候,这种方法方法需要花费很多的时间。
方法二:
利用斯特林(Stirling)公式的进行求解。下面是推导得到的公式:
res=(long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
当n=1的时候,上面的公式不适用,所以要单独处理n=1的情况!
.
有关斯特林(Stirling)公式及其相关推导,这里就不进行详细描述,有兴趣的话可看这里。
这种方法速度很快就可以得到结果。详细证明如下:
http://episte.math.ntu.edu.tw/articles/mm/mm_17_2_05/index.html
14.
*/
//c语言版
#include <stdio.h>
#include <math.h>
int main()
{
int n,cas,i;
double sum;
scanf("%d",&cas);
while (cas--)//n!≈√2πn { (n/e)^n }
{
scanf("%d",&n);
sum=1;
for(i=1;i<=n;i++)
sum+=log10((double)i);
printf("%d ",(int)sum);
}
return 0;
}
//C++版
/*
#include<iostream>
#include <cmath>
using namespace std;
int normal(double n){
double x=0;
while(n){
x +=log10(n);
n--;
}
return (int)x+1;
}
long stirling(double n){
long x=0;
if( n ==1 )
x = 1;
else{ x = (long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
}
return x;
}
int main()
{int n;
cin>>n;//c++中输入一个数
while(n--){
int x;
cin>>x;
cout<<stirling(x)<<endl;//c++中输出一个数
}
return 0;
}
*/
作者:chao1983210400 发表于2013-7-10 13:19:06 原文链接
阅读:6 评论:0 查看评论