zoukankan      html  css  js  c++  java
  • 蚁群算法

    参考段海滨的代码.. TSP 31cities

      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 #include <string.h>
      4 #include <math.h>
      5 #include <time.h>
      6 
      7 #define DIST_2_CITY(a, b) sqrt((float)((a)[0]-(b)[0])*((a)[0]-(b)[0])+((a)[1]-(b)[1])*((a)[1]-(b)[1]))
      8 
      9 
     10 const int CityNum = 31;                     /* 城市数量 */
     11 const int AntNum = 50;                      /* 蚂蚁数量 */
     12 const int CityCoor[CityNum][2] =            /* 城市坐标 */
     13 {
     14     {1304, 2312}, {3639, 1315}, {4177, 2244}, {3712, 1399}, {3488, 1535},
     15     {3326, 1556}, {3238, 1229}, {4196, 1004}, {4312, 790 }, {4386, 570 },
     16     {3007, 1970}, {2562, 1756}, {2788, 1491}, {2381, 1676}, {1332, 695 },
     17     {3715, 1678}, {3918, 2179}, {4061, 2370}, {3780, 2212}, {3676, 2578},
     18     {4029, 2838}, {4263, 2931}, {3429, 1908}, {3507, 2367}, {3394, 2643},
     19     {3439, 3201}, {2935, 3240}, {3140, 3550}, {2545, 2357}, {2778, 2826},
     20     {2370, 2975}
     21 };
     22 
     23 
     24 const float inittau = 1.0f;                 /* 初始信息量 */
     25 float tau[CityNum][CityNum];                /* τ, 每条路径上的信息量 */
     26 float deltatau[CityNum][CityNum];           /* Δτ, 代表相应路径上的信息素增量 */
     27 float DistMatrix[CityNum][CityNum];         /* 城市距离矩阵 */
     28 float eta[CityNum][CityNum];                /* η, 启发函数,其值eta[i][j] = 1 / DistMatrix[i][j] */
     29 int tabu[AntNum][CityNum];                  /* 禁忌表,tabu[i][j]=1表示蚂蚁i已经走过了j城市 */
     30 int route[AntNum][CityNum];                 /* 保存蚂蚁k的路径的数组为route[k][CityNum] */
     31 
     32 /* 最优解 */
     33 float solution[AntNum];
     34 int BestRoute[CityNum];
     35 float BestSolution;
     36 
     37 
     38 float alpha;                                /* α, 信息启发因子 */
     39 float beta;                                 /* β, 期望启发因子 */
     40 float rho;                                  /* ρ, 信息残留因子 */
     41 float Q;                                    /* 信息素强度 */
     42 
     43 
     44 
     45 
     46 int MaxIter;                                /* 最大迭代次数 */
     47 
     48 
     49 /* 计算适应度(长度) */
     50 float GetFitness( int citypos[] )
     51 {
     52     register int i;
     53     register float sum;
     54 
     55     sum = 0.0f;
     56     for ( i = CityNum - 1; i > 0; i -- )
     57     {
     58         sum += DistMatrix[citypos[i]][citypos[i - 1]];
     59     }
     60     sum += DistMatrix[citypos[0]][citypos[CityNum - 1]];
     61 
     62     return sum;
     63 }
     64 
     65 int main( )
     66 {
     67     register int i, j, k;
     68     int iter, step;
     69     float drand;
     70     float sum, partsum[CityNum];
     71     float tmpq;
     72 
     73     srand( ( unsigned int )time( NULL ) );
     74 
     75     /* 初始化全局参数 */
     76     alpha = 1.0f;
     77     beta = 5.0f;
     78     rho = 0.95f;
     79     Q = 100.0f;
     80     MaxIter = 200;
     81 
     82     /* 获取距离矩阵 */
     83     for ( i = 0; i < CityNum; i ++ )
     84     {
     85         DistMatrix[i][i] = 0.0f;
     86         for ( j = i + 1; j < CityNum; j ++ )
     87         {
     88             DistMatrix[j][i] = DistMatrix[i][j] = DIST_2_CITY( CityCoor[i], CityCoor[j] );
     89         }
     90     }
     91 
     92     /* 初始化启发因子 */
     93     for ( i = 0; i < CityNum; i++ )
     94     {
     95         for ( j = 0; j < CityNum; j++ )
     96         {
     97             tau[i][j] = inittau;
     98             if ( j > i )
     99             {
    100                 eta[j][i] = eta[i][j] = 1.0f / DistMatrix[i][j];
    101             }
    102         }
    103     }
    104 
    105     for ( iter = 0; iter < MaxIter; iter ++ )
    106     {
    107         /* 初始化蚂蚁 */
    108         memset( tabu, 0, sizeof( tabu ) );
    109         for ( k = 0; k < AntNum; k++ )
    110         {
    111             route[k][0] = rand() % CityNum;     /* 设置第k个蚂蚁的起始城市 */
    112             tabu[k][route[k][0]] = 1;           /* 填充禁忌表 */
    113         }
    114 
    115         /* 为每只蚂蚁生成完整路径 */
    116         for ( k = 0; k < AntNum; k++ )
    117         {
    118             /* 步进 */
    119             for ( step = 1; step < CityNum; step ++ )
    120             {
    121                 /* 轮盘赌 */
    122                 i = 0;
    123                 sum = 0.0f;
    124 
    125                 for ( j = 0; j < CityNum; j ++ )
    126                 {
    127                     if ( tabu[k][j] == 0 )
    128                     {
    129                         partsum[i] = pow( tau[route[k][step - 1]][j], alpha ) * pow( eta[route[k][step - 1]][j], beta );
    130                         sum += partsum[i];
    131                         i ++;
    132                     }
    133                 }
    134 
    135                 partsum[0] /= sum;
    136                 for ( j = 1; j < i; j ++ )
    137                 {
    138                     partsum[j] = partsum[j] / sum + partsum[j - 1];
    139                 }
    140                 partsum[i - 1] = 1.1f;
    141 
    142                 drand = rand() / ( RAND_MAX + 1.0f );
    143                 i = 0;
    144                 for ( j = 0; j < CityNum; j ++ )
    145                 {
    146                     if ( tabu[k][j] == 0 && drand < partsum[i ++] )
    147                     {
    148                         break;
    149                     }
    150                 }
    151 
    152                 tabu[k][j] = 1;         /* 禁忌表置访问标志 */
    153                 route[k][step] = j;     /* 保存蚂蚁k的第step步经过的城市 */
    154             }
    155         }
    156 
    157 
    158         /* 查询最优,并保存 */
    159         j = 0;
    160         BestSolution = solution[0] = GetFitness( route[0] );
    161         for ( k = 1; k < AntNum; k ++ )
    162         {
    163             solution[k] = GetFitness( route[k] );
    164             if ( solution[k] < BestSolution )
    165             {
    166                 j = k;
    167                 BestSolution = solution[k];
    168             }
    169         }
    170         memcpy( BestRoute, route[j], sizeof( BestRoute ) );
    171 
    172         /* 计算各个路径上的信息素增量 */
    173         memset( deltatau, 0, sizeof( deltatau ) );
    174         for ( k = 0; k < AntNum; k ++ )
    175         {
    176             tmpq = Q / solution[k];
    177 
    178             for ( step = 1; step < CityNum; step ++ )
    179             {
    180                 deltatau[route[k][step - 1]][route[k][step]] += tmpq;
    181                 deltatau[route[k][step]][route[k][step - 1]] += tmpq;
    182             }
    183             deltatau[route[k][CityNum - 1]][route[k][0]] += tmpq;
    184             deltatau[route[k][0]][route[k][CityNum - 1]] += tmpq;
    185         }
    186 
    187         /* 更新路径上的信息素 */
    188         for ( i = 0; i < CityNum; i ++ )
    189         {
    190             for ( j = i + 1; j < CityNum; j ++ )
    191             {
    192                 tau[i][j] = rho * tau[i][j] + deltatau[i][j];
    193 
    194                 /* 避免启发信息被路径信息淹没 */
    195                 if ( tau[i][j] < 0.00001f ) tau[i][j] = 0.00001f;
    196                 else if ( tau[i][j] > 20.0f ) tau[i][j] = 20.0f;
    197 
    198                 tau[j][i] = tau[i][j];
    199             }
    200         }
    201     }
    202 
    203 
    204     printf( "*-------------------------------------------------------------------------*
    " );
    205     printf( "the initialized parameters of ACA are as follows:
    " );
    206     printf( "alpha = %f, beta = %f, rho = %f, Q = %f
    ", alpha, beta, rho, Q );
    207     printf( "the maximum iteration number of ACA is: %d
    ", MaxIter );
    208     printf( "the shortest length of the path is: %f
    ", BestSolution );
    209     printf( "the best route is:
    " );
    210     for ( i = 0; i < CityNum; i ++ )
    211     {
    212         printf( "%d ", BestRoute[i] );
    213     }
    214     printf( "
    " );
    215     printf( "*-------------------------------------------------------------------------*
    " );
    216 
    217 
    218     return 0;
    219 }
  • 相关阅读:
    adb client, adb server, adbd原理浅析(附带我的操作过程)【转】
    ADB运行框架原理解析【转】
    android adb 源码框架分析(2 角色)【转】
    android adb 源码框架分析(1 系统)【转】
    ADB 源码分析(一) ——ADB模块简述【转】
    Awesome Adb——一份超全超详细的 ADB 用法大全【转】
    Android系统设置Android adb 开关的方法【转】
    [RK3288][Android6.0] 调试笔记 --- 测试I2C设备正常传输方法【转】
    [RK3399][Android7.1] 调试笔记 --- 模块编译32位动态库【转】
    Linux内核中工作队列的使用work_struct,delayed_work【转】
  • 原文地址:https://www.cnblogs.com/javado/p/3161771.html
Copyright © 2011-2022 走看看