zoukankan      html  css  js  c++  java
  • 《Java从入门到失业》第一章:计算机基础知识(1.1):二进制和十六进制

    0 前言

      最近7年来的高强度工作和不规律的饮食作息,压得我有些喘不过气,身体也陆续报警。2018年下半年的一场病,让我意识到了这个问题的严重性,于是开始强制自己有规律饮食和作息,并辅以健身锻炼,不到2年的时间,长期的腰痛和左肩膀痛竟然无药自愈,慢性胃炎也得到了缓解,于是我下定决心要坚持下去。

      2020年一场突如其来的疫情,打乱了我的生活节奏。再由于公司发生了一些事情以及自身的某些原因,终于在37周岁这样一个尴尬的年龄,光荣的失业了。刚开始的十来天,觉得挺美,天天睡到自然醒,顿顿都自己做健身餐,上午看看书,下午健个身,还可以陪孩子学习玩耍;慢慢的发现,这样的日子也不是长(没)久(有)之(收)计(入),想给自己找个事情做做,想了很多,最后觉得自己和Java混了15年,不能浪费啊,虽然称不上高手,但是毕竟还是有15年的苦劳,给刚入门的小同学做个开山师傅还是可以的,因此决定开博客写文章。

      既然决定要在网上混了,得有个响亮的名头,思来想去,既然成为了一个大龄失业中年大叔,那就叫“Java大失叔”好了。

    1 计算机基础知识

           想了很久,不知道从哪个地方开始写起,于是回忆我刚入门那会,是从学习孙鑫老师的视频开始的,依稀记得第一课是讲计算机组成、二进制这些。因此我也打算从这开始,虽然这些东西看起来和Java没啥关系,就当做我的一个情怀好了,也可以给大家增加一些奇怪的知识。如果已经了解的或者不想看的,直接忽略该篇就好。(当然,由于能力有限,只能点到为止,如果特别有兴趣的朋友,请出门右转,参阅更加专业的书籍)

    1.1二进制、十六进制

           这一小节,先来掌握一些数学知识:二进制和十六进制。为啥要学这个呢?因为计算机只认识2个数字(英文叫digit):0和1,因此在计算机中的数据都是1001001011111100这样的数字串,这其实就是二进制的数字串,就好比我们实际生活当中的十进制数字串:93322415,我们管这个数字串叫数值(英文叫number)

    1.1.1十进制

           我们先回忆一下什么是十进制?小学生都知道,逢10进1,具体总结如下:

    • 一共有0~9共10个数字
    • 一个十进制数值由若干个数字组成,数字的数量叫位数,例如3位数988
    • 每个位上的数字取值范围为0~9
    • 同位的两个数字相加,超过10的部分向高位进一,剩下的部分留在原位,例如9+8=17,这就是逢10进1
    • 相邻的2个位,差别是10倍,例如300是30的10倍

    生活当中,我们使用的就是十进制数值,例如你们班里有18个漂亮的女生,一年有365天,你的口袋里就剩下5块钱了,我们把这些数字分析一下:

    数值

    百位

    十位

    个位

    分解

    进一步分解

    5

    0

    0

    5

    0*100 + 0*10 + 5*1

    0*102 + 0*101 + 5*100

    18

    0

    1

    8

    0*100 + 1*10 + 8*1

    0*102 + 1*101 + 8*100

    365

    3

    6

    5

    3*100 + 6*10 + 5*1

    3*102 + 6*101 + 5*100

    相信大家都看出规律了,废话不多说,总结一下:假设一个十进制数值N,一共有n位,第n位上对应的数字为an,那么N=an*10n-1 + an-1*10n-2 + … + a1*100。太棒了,我们已经总结出一条规律了,呱唧呱唧!

           下面我们再来看生活中的一个例子,猜猜下面这个是什么东西?

     

    我相信你们99.99%的人都知道,这是一个记分牌。一开始2边都是000,红队得1分,就变成001,红队最多能变成999。也就是说,一个3位数的记分牌,可以表示000~999共1000个数值,最大的数值是999。我们再列一个表:

    位数

    能表示数值范围

    能表示数值数量

    最大数值

    1

    0~9

    10=101

    9=101-1

    2

    00~99

    100=102

    99=102-1

    3

    000~999

    1000=103

    999=103-1

    OK,规律一目了然:对于n位数,一共有=10n个取值,能表示的最大数值为10n-1。到这里,我们把十进制就搞明白了,可以总结十进制的特点如下:

    • 一共有0~9共10个数字
    • 每个位上的数字取值范围为0~9
    • 同位的两个数字相加,逢10进1
    • 相邻的2个位,差别是10倍
    • 假设一个十进制数值N,一共有n位,第n位上对应的数字为an,那么N=an*10n-1 + an-1*10n-2 + … + a1*100
    • 对于n位数,一共有=10n个取值,能表示的最大数值为10n-1

    1.1.2二进制

           我们搞明白了十进制的特点,对比着再来理解二进制,so easy!妈妈再也不用担心我的学习了!我们可以直接写出二进制的特点:

    • 一共有0~1共2个数字
    • 每个位上的数字取值范围为0~1
    • 同位的两个数字相加,逢2进1
    • 相邻的2个位,差别是2倍
    • 假设一个二进制数值N,一共有n位,第n位上对应的数字为an,那么N=an*2n-1 + an-1*2n-2 + … + a1*20
    • 对于n位数,一共有=2n个取值,能表示的最大数值为2n-1

      好了,二进制的特点有了,那么一个二进制数值1010对应的十进制数值是多少呢?搞懂这个问题前,先解决另外一个问题,就是接下来我们会把十进制数值和二进制数值放在一起讨论,那么每次都说十进制某某、二进制某某,太累了,于是聪明的人类就约定一下,在二进制数值前加上一个符号0b表示这是一个二进制数值,例如0b1010,这样是不是简单多了?下面我们就来研究一下换算问题。

      还记得在十进制中,有位的概念,分别是个位、十位、百位、千位等。实际上可以认为是100位、101位、102位、103位。那么在二进制中,我们可以认为是20位、21位、22位、23。有了这个理论基础,我们就可以看一个二进制数值的拆解表以及对应的十进制数:

    数值

    “百”位

    “十”位

    “个”位

    分解

    对应十进制数值

    0b1

    0

    0

    1

    0*22 + 0*21 + 1*20

    1

    0b10

    0

    1

    0

    0*22 + 1*21 + 0*20

    2

    0b101

    1

    0

    1

    1*22 + 0*21 + 1*20

    5

    我们太厉害了,书写问题搞定了,换算问题搞定了,世界是我的了!我们来对比一下十进制和二进制:

    对比项

    十进制

    二进制

    数字

    0~9

    0~2

    相邻2个位差别

    10倍

    2倍

    n位数可取数值数量

    10n

    2n

    n位数表示最大数值

    10n -1

    2n -1

    n位数值公式

    an*10n-1 + an-1*10n-2 + … + a1*100

    an*2n-1 + an-1*2n-2 + … + a1*20

    这个表,大家最好背下来。

    1.1.3十六进制

    太棒了,我们已经搞明白了二进制,聪明的同学又要问了,计算机中都是0和1,学习了二进制就可以了,为啥要学习十六进制呢?我们先看一个二进制数:1011111110101001110101011000110001,天哪!太长了。发现了吧,二进制在书写上非常不方便,那么有没有方便的书写方法呢?人的聪明再一次体现,答案是:有。用啥?十六进制。为啥?不知道……,就知道你不知道,嘿嘿。上面我们知道,一个4位的二进制数,有几种取值?还记得要背的表吗?答案是24=16种。一个1位十六进数有几种取值呢?相信你可以猜到,答案是161=16种。哇塞,好神奇,都是16,好像找到规律了,对了,就是可以把一个二进制数,4个4个的打包,用一个十六进制数表示,这样就大大的缩短了一个二进制数的书写。接下来,我相信99.99%的同学,都可以列出十六进制的特点了:

    一共有0~16共16个数字

    每个位上的数字取值范围为0~16

    同位的两个数字相加,逢16进1

    相邻的2个位,差别是16倍

    假设一个十六进制数值N,一共有n位,第n位上对应的数字为an,那么N=an*16n-1 + an-1*16n-2 + … + a1*160

    对于n位数,一共有=16n个取值,能表示的最大数值为16n-1

    错是没错,但是这里有个小问题,我们的认知世界里,只有0~9共10个数字,那么10~15这是个2位数,我们怎么表示呢?扑克牌,大家都玩过吧,里面的JQK其实就是表示11、12、13。因此,我们也可以用字母来表示,我们一般用A、B、C、D、E、F分别表示10、11、12、13、14、15。前面我们学习过,一个二进制数值前我们会加0b,那么一个十六进制数值前,我们给他加上0x。

           在实际运用中,我们会把一个二进制数值的位数补齐为4的倍数,不足时前面补0。例如0b101我们会写成0b0101。同理,我们会把一个十六进制数值的位数补齐为2的倍数,不足时前面补0,例如0xA我们会写成0x0A,0x1FB我们会写成0x01FB。

           好了,到此为止,进制的问题我们就讨论完毕了,我们来回答这一小节开始的问题:对于0b1011111110101001110101011000110001,如何用十六进制书写。我数了一下,一共34位,先把位数补齐为4的倍数补到36位:0b001011111110101001110101011000110001,然后从低位到高位,4个一组打包,列表如下:

    打包项

    十进制

    十六进制

    0001

    20=1

    1

    0011

    21+20=3

    3

    0110

    22+21=6

    6

    0101

    22+20=5

    5

    0111

    22+21+20=7

    7

    1010

    23+21=10

    A

    1110

    23+22+21=14

    E

    1111

    23+22+21+20=15

    F

    0010

    21=2

    2

     用十六进制书写,就可以书写为:0x2FEA75631,再补齐为2的倍数:0x02FEA75631。

       最后,我们插入一个小知识,在计算机中,我们把一个0或1叫做位(bit),8位叫做一个字节(Byte),另外为了物理上的实现方便和运算方便,规定1K=1024,1M=1024K,1G=1024M……。

    其次还有一些东西最好能够记住,这样方便以后能够快速学习一些知识,我总结一下:

    24=16、25=32、26=64、27=128、28=256、210=1024、216=65536、232=4294967296

  • 相关阅读:
    看我这篇就够了!os.system批量执行py文件!!!!
    关于python文件显示为空白文件图标的解决办法
    Python Windows下整体项目环境迁移
    python + selenium + firefox 自定义配置文件启动浏览器
    Selenium OSError: [WinError 193] %1 不是有效的 Win32 应用程序
    redis安装后,输入redis-server.exe redis.windows.conf无法启动
    MongoDB安装
    安装tesserocr pillow报错
    【流水账】2021-07-09 Day-29
    【流水账】2021-07-08 Day-28
  • 原文地址:https://www.cnblogs.com/javadss/p/13457609.html
Copyright © 2011-2022 走看看