1. Math.random() 静态方法
产生的随机数是 0 - 1 之间的一个 double
,即 0 <= random <= 1
。
使用:
for (int i = 0; i < 10; i++) {
System.out.println(Math.random());
}
结果:
0.3598613895606426
0.2666778145365811
0.25090731064243355
0.011064998061666276
0.600686228175639
0.9084006027629496
0.12700524654847833
0.6084605849069343
0.7290804782514261
0.9923831908303121
实现原理:
When this method is first called, it creates a single new pseudorandom-number generator, exactly as if by the expression new java.util.Random()
This new pseudorandom-number generator is used thereafter for all calls to this method and is used nowhere else.
当第一次调用 Math.random()
方法时,自动创建了一个伪随机数生成器,实际上用的是 new java.util.Random()
。
当接下来继续调用 Math.random()
方法时,就会使用这个新的伪随机数生成器。
源码如下:
public static double random() {
Random rnd = randomNumberGenerator;
if (rnd == null) rnd = initRNG(); // 第一次调用,创建一个伪随机数生成器
return rnd.nextDouble();
}
private static synchronized Random initRNG() {
Random rnd = randomNumberGenerator;
return (rnd == null) ? (randomNumberGenerator = new Random()) : rnd; // 实际上用的是new java.util.Random()
}
This method is properly synchronized to allow correct use by more than one thread. However, if many threads need to generate pseudorandom numbers at a great rate, it may reduce contention for each thread to have its own pseudorandom-number generator.
initRNG()
方法是 synchronized
的,因此在多线程情况下,只有一个线程会负责创建伪随机数生成器(使用当前时间作为种子),其他线程则利用该伪随机数生成器产生随机数。
因此 Math.random()
方法是线程安全的。
什么情况下随机数的生成线程不安全:
- 线程1在第一次调用
random()
时产生一个生成器generator1
,使用当前时间作为种子。 - 线程2在第一次调用
random()
时产生一个生成器generator2
,使用当前时间作为种子。 - 碰巧
generator1
和generator2
使用相同的种子,导致generator1
以后产生的随机数每次都和generator2
以后产生的随机数相同。
什么情况下随机数的生成线程安全: Math.random()
静态方法使用
- 线程1在第一次调用
random()
时产生一个生成器generator1
,使用当前时间作为种子。 - 线程2在第一次调用
random()
时发现已经有一个生成器generator1
,则直接使用生成器generator1
。
public class JavaRandom {
public static void main(String args[]) {
new MyThread().start();
new MyThread().start();
}
}
class MyThread extends Thread {
public void run() {
for (int i = 0; i < 2; i++) {
System.out.println(Thread.currentThread().getName() + ": " + Math.random());
}
}
}
结果:
Thread-1: 0.8043581595645333
Thread-0: 0.9338269554390357
Thread-1: 0.5571569413128877
Thread-0: 0.37484586843392464
2. java.util.Random 工具类
基本算法:linear congruential pseudorandom number generator (LGC) 线性同余法伪随机数生成器
缺点:可预测
An attacker will simply compute the seed from the output values observed. This takes significantly less time than 2^48 in the case of java.util.Random.
从输出中可以很容易计算出种子值。
It is shown that you can predict future Random outputs observing only two(!) output values in time roughly 2^16.
因此可以预测出下一个输出的随机数。
You should never use an LCG for security-critical purposes.
在注重信息安全的应用中,不要使用 LCG 算法生成随机数,请使用 SecureRandom。
使用:
Random random = new Random();
for (int i = 0; i < 5; i++) {
System.out.println(random.nextInt());
}
结果:
-24520987
-96094681
-952622427
300260419
1489256498
Random类默认使用当前系统时钟作为种子:
public Random() {
this(seedUniquifier() ^ System.nanoTime());
}
public Random(long seed) {
if (getClass() == Random.class)
this.seed = new AtomicLong(initialScramble(seed));
else {
// subclass might have overriden setSeed
this.seed = new AtomicLong();
setSeed(seed);
}
}
Random类提供的方法:API
nextBoolean()
- 返回均匀分布的true
或者false
nextBytes(byte[] bytes)
nextDouble()
- 返回 0.0 到 1.0 之间的均匀分布的double
nextFloat()
- 返回 0.0 到 1.0 之间的均匀分布的float
nextGaussian()
- 返回 0.0 到 1.0 之间的高斯分布(即正态分布)的double
nextInt()
- 返回均匀分布的int
nextInt(int n)
- 返回 0 到 n 之间的均匀分布的int
(包括 0,不包括 n)nextLong()
- 返回均匀分布的long
setSeed(long seed)
- 设置种子
只要种子一样,产生的随机数也一样: 因为种子确定,随机数算法也确定,因此输出是确定的!
Random random1 = new Random(10000);
Random random2 = new Random(10000);
for (int i = 0; i < 5; i++) {
System.out.println(random1.nextInt() + " = " + random2.nextInt());
}
结果:
-498702880 = -498702880
-858606152 = -858606152
1942818232 = 1942818232
-1044940345 = -1044940345
1588429001 = 1588429001
3. java.util.concurrent.ThreadLocalRandom 工具类
ThreadLocalRandom
是 JDK 7 之后提供,也是继承至 java.util.Random。
private static final ThreadLocal<ThreadLocalRandom> localRandom =
new ThreadLocal<ThreadLocalRandom>() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};
每一个线程有一个独立的随机数生成器,用于并发产生随机数,能够解决多个线程发生的竞争争夺。效率更高!
ThreadLocalRandom
不是直接用 new
实例化,而是第一次使用其静态方法 current()
得到 ThreadLocal<ThreadLocalRandom>
实例,然后调用 java.util.Random
类提供的方法获得各种随机数。
使用:
public class JavaRandom {
public static void main(String args[]) {
new MyThread().start();
new MyThread().start();
}
}
class MyThread extends Thread {
public void run() {
for (int i = 0; i < 2; i++) {
System.out.println(Thread.currentThread().getName() + ": " + ThreadLocalRandom.current().nextDouble());
}
}
}
结果:
Thread-0: 0.13267085355389086
Thread-1: 0.1138484950410098
Thread-0: 0.17187774671469858
Thread-1: 0.9305225910262372
4. java.Security.SecureRandom
也是继承至 java.util.Random。
Instances of java.util.Random are not cryptographically secure. Consider instead using SecureRandom to get a cryptographically secure pseudo-random number generator for use by security-sensitive applications.
SecureRandom takes Random Data from your os (they can be interval between keystrokes etc - most os collect these data store them in files - /dev/random and /dev/urandom in case of linux/solaris) and uses that as the seed.
操作系统收集了一些随机事件,比如鼠标点击,键盘点击等等,SecureRandom 使用这些随机事件作为种子。
SecureRandom
提供加密的强随机数生成器 (RNG),要求种子必须是不可预知的,产生非确定性输出。
SecureRandom
也提供了与实现无关的算法,因此,调用方(应用程序代码)会请求特定的 RNG 算法并将它传回到该算法的 SecureRandom
对象中。
- 如果仅指定算法名称,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
- 如果既指定了算法名称又指定了包提供程序,如下所示:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
使用:
SecureRandom random1 = SecureRandom.getInstance("SHA1PRNG");
SecureRandom random2 = SecureRandom.getInstance("SHA1PRNG");
for (int i = 0; i < 5; i++) {
System.out.println(random1.nextInt() + " != " + random2.nextInt());
}
结果:
704046703 != 2117229935
60819811 != 107252259
425075610 != -295395347
682299589 != -1637998900
-1147654329 != 1418666937
5. 随机字符串
可以使用 Apache Commons-Lang 包中的 RandomStringUtils
类。
Maven 依赖如下:
<dependency>
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactId>
<version>2.6</version>
</dependency>
示例:
public class RandomStringDemo {
public static void main(String[] args) {
// Creates a 64 chars length random string of number.
String result = RandomStringUtils.random(64, false, true);
System.out.println("random = " + result);
// Creates a 64 chars length of random alphabetic string.
result = RandomStringUtils.randomAlphabetic(64);
System.out.println("random = " + result);
// Creates a 32 chars length of random ascii string.
result = RandomStringUtils.randomAscii(32);
System.out.println("random = " + result);
// Creates a 32 chars length of string from the defined array of
// characters including numeric and alphabetic characters.
result = RandomStringUtils.random(32, 0, 20, true, true, "qw32rfHIJk9iQ8Ud7h0X".toCharArray());
System.out.println("random = " + result);
}
}
RandomStringUtils
类的实现上也是依赖了 java.util.Random
工具类:
RandomStringUtils 类的定义
参考:
- http://yangzb.iteye.com/blog/325264
- http://stackoverflow.com/questions/11051205/difference-between-java-util-random-and-java-security-securerandom
作者:专职跑龙套
链接:https://www.jianshu.com/p/2f6acd169202
近期热文推荐:
1.Java 15 正式发布, 14 个新特性,刷新你的认知!!
2.终于靠开源项目弄到 IntelliJ IDEA 激活码了,真香!
3.我用 Java 8 写了一段逻辑,同事直呼看不懂,你试试看。。
觉得不错,别忘了随手点赞+转发哦!