Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7.
In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
//这道题与HDU1097题基本就是一样的
只需要稍微改一下就可以了
#include <stdio.h> #include<string.h> int main() { int a,b,n,t; scanf("%d",&t); while(t--) { scanf("%d",&a); n=a%10; b = a; if(b==0) printf("1\n"); else { switch(n) { case 0: case 1: case 6: break; case 2: n=b%4; switch(n) { case 1: n=2; break; case 2: n=4; break; case 3: n=8; break; case 0: n=6; break; } break; case 3: n=b%4; switch(n) { case 1: n=3; break; case 2: n=9; break; case 3: n=7; break; case 0: n=1; break; } break; case 4: n=b%2; switch(n) { case 1: n=4; break; case 0: n=6; break; } break; case 7: n=b%4; switch(n) { case 1: n=7; break; case 2: n=9; break; case 3: n=3; break; case 0: n=1; break; } break; case 8: n=b%4; switch(n) { case 1: n=8; break; case 2: n=4; break; case 3: n=2; break; case 0: n=6; break; } break; case 9: n=b%2; switch(n) { case 1: n=9; break; case 0: n=1; break; } break; } } printf("%d\n",n); } return 0; }