1、概述 Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如: 采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer) $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar -input myInputDirs -output myOutputDir -mapper cat -reducer wc 本文安排如下,第二节介绍Hadoop Streaming的原理,第三节介绍Hadoop Streaming的使用方法,第四节介绍Hadoop Streaming的程序编写方法,在这一节中,用C++、C、shell脚本 和python实现了WordCount作业,第五节总结了常见的问题。文章最后给出了程序下载地址。(本文内容基于Hadoop-0.20.2版本) (注:如果你采用的语言为C或者C++,也可以使用Hadoop Pipes,具体可参考这篇文章:) 2、Hadoop Streaming原理 mapper和reducer会从标准输入中读取用户数据,一行一行处理后发送给标准输出。Streaming工具会创建MapReduce作业,发送给各个tasktracker,同时监控整个作业的执行过程。 如果一个文件(可执行或者脚本)作为mapper,mapper初始化时,每一个mapper任务会把该文件作为一个单独进程启动,mapper任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,mapper收集可执行文件进程标准输出的内容,并把收到的每一行内容转化成key/value对,作为mapper的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。如果没有tab,整行作为key值,value值为null。 对于reducer,类似。 以上是Map/Reduce框架和streaming mapper/reducer之间的基本通信协议。 3、Hadoop Streaming用法 Usage: $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar [options] options: (1)-input:输入文件路径 (2)-output:输出文件路径 (3)-mapper:用户自己写的mapper程序,可以是可执行文件或者脚本 (4)-reducer:用户自己写的reducer程序,可以是可执行文件或者脚本 (5)-file:打包文件到提交的作业中,可以是mapper或者reducer要用的输入文件,如配置文件,字典等。 (6)-partitioner:用户自定义的partitioner程序 (7)-combiner:用户自定义的combiner程序(必须用java实现) (8)-D:作业的一些属性(以前用的是-jonconf),具体有: 1)mapred.map.tasks:map task数目
2)mapred.reduce.tasks:reduce task数目
3)stream.map.input.field.separator/stream.map.output.field.separator: map task输入/输出数
据的分隔符,默认均为 。
4)stream.num.map.output.key.fields:指定map task输出记录中key所占的域数目
5)stream.reduce.input.field.separator/stream.reduce.output.field.separator:reduce task输入/输出数据的分隔符,默认均为 。
6)stream.num.reduce.output.key.fields:指定reduce task输出记录中key所占的域数目
另外,Hadoop本身还自带一些好用的Mapper和Reducer:
(1) Hadoop聚集功能
Aggregate提供一个特殊的reducer类和一个特殊的combiner类,并且有一系列的“聚合器”(例如“sum”,“max”,“min”等)用于聚合一组value的序列。用户可以使用Aggregate定义一个mapper插件类,这个类用于为mapper输入的每个key/value对产生“可聚合项”。Combiner/reducer利用适当的聚合器聚合这些可聚合项。要使用Aggregate,只需指定“-reducer aggregate”。 (2)字段的选取(类似于Unix中的‘cut’)
Hadoop的工具类org.apache.hadoop.mapred.lib.FieldSelectionMapReduc帮助用户高效处理文本数据,就像unix中的“cut”工具。工具类中的map函数把输入的key/value对看作字段的列表。 用户可以指定字段的分隔符(默认是tab),可以选择字段列表中任意一段(由列表中一个或多个字段组成)作为map输出的key或者value。 同样,工具类中的reduce函数也把输入的key/value对看作字段的列表,用户可以选取任意一段作为reduce输出的key或value。 4、Mapper和Reducer实现 本节试图用尽可能多的语言编写Mapper和Reducer,包括Java,C,C++,Shell脚本,python等。 由于Hadoop会自动解析数据文件到Mapper或者Reducer的标准输入中,以供它们读取使用,所有应先了解各个语言获取标准输入的方法。 (1) Java语言: 见Hadoop自带例子 (2) C++语言: string key;
while(cin>>key){
cin>>value;
….
(3) C语言: char buffer[BUF_SIZE];
while(fgets(buffer, BUF_SIZE - 1, stdin)){
int len = strlen(buffer);
…
}
(4) Shell脚本 用管道 (5) Python脚本 import sys
for line in sys.stdin:
.......
为了说明各种语言编写Hadoop Streaming程序的方法,下面以WordCount为例,WordCount作业的主要功能是对用户输入的数据中所有字符串进行计数。 (1)C语言实现 //mapper
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define BUF_SIZE 2048
#define DELIM "
"
int main(int argc, char *argv[]){
char buffer[BUF_SIZE];
while(fgets(buffer, BUF_SIZE - 1, stdin)){
int len = strlen(buffer);
if(buffer[len-1] == '
')
buffer[len-1] = 0;
char *querys = index(buffer, ' ');
char *query = NULL;
if(querys == NULL) continue;
querys += 1; /* not to include ' ' */
query = strtok(buffer, " ");
while(query){
printf("%s 1
", query);
query = strtok(NULL, " ");
}
}
return 0;
}
//---------------------------------------------------------------------------------------
//reducer
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define BUFFER_SIZE 1024
#define DELIM " "
int main(int argc, char *argv[]){
char strLastKey[BUFFER_SIZE];
char strLine[BUFFER_SIZE];
int count = 0;
*strLastKey = ' ';
*strLine = ' ';
while( fgets(strLine, BUFFER_SIZE - 1, stdin) ){
char *strCurrKey = NULL;
char *strCurrNum = NULL;
strCurrKey = strtok(strLine, DELIM);
strCurrNum = strtok(NULL, DELIM); /* necessary to check error but.... */
if( strLastKey[0] == ' '){
strcpy(strLastKey, strCurrKey);
}
if(strcmp(strCurrKey, strLastKey)){
printf("%s %d
", strLastKey, count);
count = atoi(strCurrNum);
}else{
count += atoi(strCurrNum);
}
strcpy(strLastKey, strCurrKey);
}
printf("%s %d
", strLastKey, count); /* flush the count */
return 0;
}
(2)C++语言实现 //mapper
#include <stdio.h>
#include <string>
#include <iostream>
using namespace std;
int main(){
string key;
string value = "1";
while(cin>>key){
cout<<key<<" "<<value<<endl;
}
return 0;
}
//------------------------------------------------------------------------------------------------------------
//reducer
#include <string>
#include <map>
#include <iostream>
#include <iterator>
using namespace std;
int main(){
string key;
string value;
map<string, int> word2count;
map<string, int>::iterator it;
while(cin>>key){
cin>>value;
it = word2count.find(key);
if(it != word2count.end()){
(it->second)++;
}
else{
word2count.insert(make_pair(key, 1));
}
}
for(it = word2count.begin(); it != word2count.end(); ++it){
cout<<it->first<<" "<<it->second<<endl;
}
return 0;
}
(3)shell脚本语言实现 $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-streaming.jar
-input myInputDirs
-output myOutputDir
-mapper cat
-reducer wc
(4)Python脚本语言实现 #!/usr/bin/env python
import sys
# maps words to their counts
word2count = {}
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words while removing any empty strings
words = filter(lambda word: word, line.split())
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Reduce step, i.e. the input for reducer.py
#
# tab-delimited; the trivial word count is 1
print '%s %s' % (word, 1)
#---------------------------------------------------------------------------------------------------------
#!/usr/bin/env python
from operator import itemgetter
import sys
# maps words to their counts
word2count = {}
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split()
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass
# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))
# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s %s'% (word, count)
5、常见问题 (1)作业总是运行失败: 需要把mapper文件和reducer文件放到各个tasktracker上,保证各个节点均有一份。也可在提交作业时,采用-file选项指定这些文件。 (2)用脚本编写时,第一行需注明脚本解释器,默认是shell 6、参考资料 【1】C++&Python实现Hadoop Streaming的paritioner和模块化 |