zoukankan      html  css  js  c++  java
  • Guava 源码分析(Cache 原理)

    前言

    Google 出的 Guava 是 Java 核心增强的库,应用非常广泛。

    我平时用的也挺频繁,这次就借助日常使用的 Cache 组件来看看 Google 大牛们是如何设计的。

    缓存

    本次主要讨论缓存。

    缓存在日常开发中举足轻重,如果你的应用对某类数据有着较高的读取频次,并且改动较小时那就非常适合利用缓存来提高性能。

    缓存之所以可以提高性能是因为它的读取效率很高,就像是 CPU 的 L1、L2、L3 缓存一样,级别越高相应的读取速度也会越快。

    但也不是什么好处都占,读取速度快了但是它的内存更小资源更宝贵,所以我们应当缓存真正需要的数据。

    其实也就是典型的空间换时间。

    下面谈谈 Java 中所用到的缓存。

    JVM 缓存

    首先是 JVM 缓存,也可以认为是堆缓存。

    其实就是创建一些全局变量,如 Map、List 之类的容器用于存放数据。

    这样的优势是使用简单但是也有以下问题:

    • 只能显式的写入,清除数据。
    • 不能按照一定的规则淘汰数据,如 LRU,LFU,FIFO 等。
    • 清除数据时的回调通知。
    • 其他一些定制功能等。

    Ehcache、Guava Cache

    所以出现了一些专门用作 JVM 缓存的开源工具出现了,如本文提到的 Guava Cache。

    它具有上文 JVM 缓存不具有的功能,如自动清除数据、多种清除算法、清除回调等。

    但也正因为有了这些功能,这样的缓存必然会多出许多东西需要额外维护,自然也就增加了系统的消耗。

    分布式缓存

    刚才提到的两种缓存其实都是堆内缓存,只能在单个节点中使用,这样在分布式场景下就招架不住了。

    于是也有了一些缓存中间件,如 Redis、Memcached,在分布式环境下可以共享内存。

    具体不在本次的讨论范围。

    Guava Cache 示例

    之所以想到 Guava 的 Cache,也是最近在做一个需求,大体如下:

    从 Kafka 实时读取出应用系统的日志信息,该日志信息包含了应用的健康状况。
    如果在时间窗口 N 内发生了 X 次异常信息,相应的我就需要作出反馈(报警、记录日志等)。

    对此 Guava 的 Cache 就非常适合,我利用了它的 N 个时间内不写入数据时缓存就清空的特点,在每次读取数据时判断异常信息是否大于 X 即可。

    伪代码如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
     
    @Value("${alert.in.time:2}")
    private int time ;
     
    @Bean
    public LoadingCache buildCache(){
    return CacheBuilder.newBuilder()
    .expireAfterWrite(time, TimeUnit.MINUTES)
    .build(new CacheLoader<Long, AtomicLong>() {
    @Override
    public AtomicLong load(Long key) throws Exception {
    return new AtomicLong(0);
    }
    });
    }
     
     
    /**
    * 判断是否需要报警
    */
    public void checkAlert() {
    try {
    if (counter.get(KEY).incrementAndGet() >= limit) {
    LOGGER.info("***********报警***********");
     
    //将缓存清空
    counter.get(KEY).getAndSet(0L);
    }
    } catch (ExecutionException e) {
    LOGGER.error("Exception", e);
    }
    }

    首先是构建了 LoadingCache 对象,在 N 分钟内不写入数据时就回收缓存(当通过 Key 获取不到缓存时,默认返回 0)。

    然后在每次消费时候调用 checkAlert() 方法进行校验,这样就可以达到上文的需求。

    我们来设想下 Guava 它是如何实现过期自动清除数据,并且是可以按照 LRU 这样的方式清除的。

    大胆假设下:

    内部通过一个队列来维护缓存的顺序,每次访问过的数据移动到队列头部,并且额外开启一个线程来判断数据是否过期,过期就删掉。有点类似于我之前写过的 动手实现一个 LRU cache

    胡适说过:大胆假设小心论证

    下面来看看 Guava 到底是怎么实现。

    原理分析

    看原理最好不过是跟代码一步步走了:

    示例代码在这里:

    https://github.com/crossoverJie/Java-Interview/blob/master/src/main/java/com/crossoverjie/guava/CacheLoaderTest.java

    8.png

    为了能看出 Guava 是怎么删除过期数据的在获取缓存之前休眠了 5 秒钟,达到了超时条件。

    2.png

    最终会发现在 com.google.common.cache.LocalCache 类的 2187 行比较关键。

    再跟进去之前第 2182 行会发现先要判断 count 是否大于 0,这个 count 保存的是当前缓存的数量,并用 volatile 修饰保证了可见性。

    更多关于 volatile 的相关信息可以查看 你应该知道的 volatile 关键字

    接着往下跟到:

    3.png

    2761 行,根据方法名称可以看出是判断当前的 Entry 是否过期,该 entry 就是通过 key 查询到的。

    这里就很明显的看出是根据根据构建时指定的过期方式来判断当前 key 是否过期了。

    5.png

    如果过期就往下走,尝试进行过期删除(需要加锁,后面会具体讨论)。

    6.png

    到了这里也很清晰了:

    • 获取当前缓存的总数量
    • 自减一(前面获取了锁,所以线程安全)
    • 删除并将更新的总数赋值到 count。

    其实大体上就是这个流程,Guava 并没有按照之前猜想的另起一个线程来维护过期数据。

    应该是以下原因:

    • 新起线程需要资源消耗。
    • 维护过期数据还要获取额外的锁,增加了消耗。

    而在查询时候顺带做了这些事情,但是如果该缓存迟迟没有访问也会存在数据不能被回收的情况,不过这对于一个高吞吐的应用来说也不是问题。

    总结

    最后再来总结下 Guava 的 Cache。

    其实在上文跟代码时会发现通过一个 key 定位数据时有以下代码:

    7.png

    如果有看过 ConcurrentHashMap 的原理 应该会想到这其实非常类似。

    其实 Guava Cache 为了满足并发场景的使用,核心的数据结构就是按照 ConcurrentHashMap 来的,这里也是一个 key 定位到一个具体位置的过程。

    先找到 Segment,再找具体的位置,等于是做了两次 Hash 定位。

    上文有一个假设是对的,它内部会维护两个队列 accessQueue,writeQueue 用于记录缓存顺序,这样才可以按照顺序淘汰数据(类似于利用 LinkedHashMap 来做 LRU 缓存)。

    同时从上文的构建方式来看,它也是构建者模式来创建对象的。

    因为作为一个给开发者使用的工具,需要有很多的自定义属性,利用构建则模式再合适不过了。

    Guava 其实还有很多东西没谈到,比如它利用 GC 来回收内存,移除数据时的回调通知等。之后再接着讨论。

  • 相关阅读:
    leetcode 110 Balanced Binary Tree
    Spark编程模型
    Spark1.4从HDFS读取文件运行Java语言WordCounts并将结果保存至HDFS
    __x__(27)0907第四天__ float 浮动
    __x__(26)0907第四天__文档流_网页最底层
    __x__(25)0907第四天__ overflow 父元素对溢出内容的处理
    __x__(24)0907第四天__ display 和 visibility
    __x__(23)0907第四天__浏览器默认样式
    __x__(22)0907第四天__ 垂直外边距重叠
    __x__(21)0907第四天__ css 盒模型 (框模型)
  • 原文地址:https://www.cnblogs.com/jay-wu/p/10033591.html
Copyright © 2011-2022 走看看