zoukankan      html  css  js  c++  java
  • svm支持向量机理解

    1、优点:

    * 因为是凸优化,所以求得的解一定是全局最优解
    * 适用于线性和非线性问题
    * 高维数据也适用,因为只取决于向量而非数据维度
    * 理论基础比较完善,不像神经网络很像黑盒。
    

    2、缺点:

    * 只适用于二分类问题。当然也可以通过组合多个svm来处理多分类问题。
    * 二次规划问题求解会涉及m阶矩阵的计算,因此不适用于超大数据集。
    * 对缺失数据比较敏感。因为svm希望数据在特征空间内线性可分,所以对数据依赖性较高。
    

    3、核函数

    * 用于将低维空间的数据映射到高维空间,便于更好地划分数据集。高效不易过拟合,但不能解决非线性问题。
    * 线性核:当特征维度超过样本数量时(文本分类通常是此情况)使用
    * 多项式核:一般很少用,稍显不稳定。
    * RBF核:当特征维度比较小,样本数量中等时使用
    

    4、硬间隔

    * 硬间隔不允许样本有分类错误
    * 通过使间隔最大化,和使样本正确分类来推导。
    * 使用了SMO(序列最小优化)算法。
    

    5、软间隔

    * 允许分类存在一定程度的错误
    

    6、对偶性

    * 在求解过程中,通过对偶性使得求解更加容易。
  • 相关阅读:
    python 获取Excel 的内容
    python 获取文件Excel 的行数与列数
    python 读取Excel 取出表头(列名)
    DRF的视图组件
    Redis
    Git的故事
    DRF的JWT用户认证
    DRF的三大认证组件
    DRF的序列化组件
    DRF的请求响应组件
  • 原文地址:https://www.cnblogs.com/jaysonteng/p/13216704.html
Copyright © 2011-2022 走看看