zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2734 Accepted Submission(s): 1284


    Problem Description

    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.


     

    Sample Input

    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0

    Sample Output

    1 3

    Author

    lcy
     
     1 #include<iostream>
    2 using namespace std;
    3 double p[100][2],q[100][2];
    4 double direction( double p[] , double q[] , double r[])
    5 {
    6 return ( (r[0] - p[0]) * (q[1] - p[1]) - (r[1] - p[1]) * (q[0] - p[0]));
    7 }
    8 bool onsegment(double p[],double q[], double r[])
    9 {
    10 if(((r[0] - p[0])*(r[0] - q[0]) <= 0) && ((r[1] - p[1]) * (r[1] - q[1]) <= 0))
    11 return true;
    12 else return false;
    13 }
    14 bool judge(int i, int j)
    15 {
    16 double d1 , d2 , d3 , d4 ;
    17 d1 = direction(p[i],q[i],p[j]);
    18 d2 = direction(p[i],q[i],q[j]);
    19 d3 = direction(p[j],q[j],p[i]);
    20 d4 = direction(p[j],q[j],q[i]);
    21 if( (d1 * d2 < 0) && (d3 * d4 < 0))
    22 return true;
    23 else if( d1 == 0 && onsegment(p[i],q[i],p[j]) == 1)
    24 return true;
    25 else if( d2 == 0 && onsegment(p[i],q[i],q[j]) == 1)
    26 return true;
    27 else if( d3 == 0 && onsegment(p[j],q[j],p[i]) == 1)
    28 return true;
    29 else if( d4 == 0 && onsegment(p[j],q[j],q[i]) == 1)
    30 return true;
    31 else return false;
    32 }
    33 int main(){
    34 int n, i , j , count;
    35 while( scanf( "%d" , &n ) , n)
    36 {
    37 for( i = 0 ; i < n ; ++ i )
    38 {
    39 scanf( "%lf %lf %lf %lf", &p[i][0] , &p[i][1] , &q[i][0] , &q[i][1] ) ;
    40 }
    41 for( i = 0 , count = 0 ; i < n ; i ++ )
    42 for( j = i + 1 ; j < n ; j ++ )
    43 if( judge( i , j ) == 1 )
    44 ++count;
    45 printf("%d\n",count);
    46 }
    47 return 0;
    48 }

      

  • 相关阅读:
    css属性操作2(外边距与内边距<盒子模型>)
    css的属性操作1
    css伪类
    属性选择器二
    属性选择器1
    03_MySQL重置root密码
    02_Mysql用户管理之Navicat下载及安装
    18.扩散模型
    17.广播模型
    16.友谊悖论
  • 原文地址:https://www.cnblogs.com/jbelial/p/2127831.html
Copyright © 2011-2022 走看看