zoukankan      html  css  js  c++  java
  • HDU 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2734 Accepted Submission(s): 1284


    Problem Description

    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.

    Input

    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.

    Output

    For each case, print the number of intersections, and one line one case.


     

    Sample Input

    2 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 3 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.000 0.00 0.00 1.00 0.00 0

    Sample Output

    1 3

    Author

    lcy
     
     1 #include<iostream>
    2 using namespace std;
    3 double p[100][2],q[100][2];
    4 double direction( double p[] , double q[] , double r[])
    5 {
    6 return ( (r[0] - p[0]) * (q[1] - p[1]) - (r[1] - p[1]) * (q[0] - p[0]));
    7 }
    8 bool onsegment(double p[],double q[], double r[])
    9 {
    10 if(((r[0] - p[0])*(r[0] - q[0]) <= 0) && ((r[1] - p[1]) * (r[1] - q[1]) <= 0))
    11 return true;
    12 else return false;
    13 }
    14 bool judge(int i, int j)
    15 {
    16 double d1 , d2 , d3 , d4 ;
    17 d1 = direction(p[i],q[i],p[j]);
    18 d2 = direction(p[i],q[i],q[j]);
    19 d3 = direction(p[j],q[j],p[i]);
    20 d4 = direction(p[j],q[j],q[i]);
    21 if( (d1 * d2 < 0) && (d3 * d4 < 0))
    22 return true;
    23 else if( d1 == 0 && onsegment(p[i],q[i],p[j]) == 1)
    24 return true;
    25 else if( d2 == 0 && onsegment(p[i],q[i],q[j]) == 1)
    26 return true;
    27 else if( d3 == 0 && onsegment(p[j],q[j],p[i]) == 1)
    28 return true;
    29 else if( d4 == 0 && onsegment(p[j],q[j],q[i]) == 1)
    30 return true;
    31 else return false;
    32 }
    33 int main(){
    34 int n, i , j , count;
    35 while( scanf( "%d" , &n ) , n)
    36 {
    37 for( i = 0 ; i < n ; ++ i )
    38 {
    39 scanf( "%lf %lf %lf %lf", &p[i][0] , &p[i][1] , &q[i][0] , &q[i][1] ) ;
    40 }
    41 for( i = 0 , count = 0 ; i < n ; i ++ )
    42 for( j = i + 1 ; j < n ; j ++ )
    43 if( judge( i , j ) == 1 )
    44 ++count;
    45 printf("%d\n",count);
    46 }
    47 return 0;
    48 }

      

  • 相关阅读:
    ADL(C++参数依赖查找)
    Sublime Text3 + Golang搭建开发环境
    Zookeeper使用命令行(转载)
    软链接和硬链接(转载)
    kafka伪集群搭建
    使用librdkafka库实现kafka的生产和消费实例生产者
    vector和map使用erase删除元素
    jquery html函数的一个问题
    贪心类区间问题
    快速幂
  • 原文地址:https://www.cnblogs.com/jbelial/p/2127831.html
Copyright © 2011-2022 走看看