zoukankan      html  css  js  c++  java
  • [Algorithms] Heap and Heapsort

    Recently I reviewed the classic heapsort algorithm and implement it according to contents in Introduction to Algorithms (3rd edition). The heap data structure is implemented as a template class and the heapsort algorithm is implemented as a public method of the template class. The code is as follows.

      1 #include <iostream>
      2 #include <vector>
      3 
      4 using namespace std;
      5 
      6 template<typename T> class Heap {
      7 public:
      8     Heap(vector<T>&);
      9     ~Heap(void);
     10     
     11     inline int parent(int);
     12     inline int left(int);
     13     inline int right(int);
     14 
     15     void max_heapify(int);
     16     void build_max_heap(void);
     17     void heap_sort(void);
     18 
     19     /* Methods for maximum priority queue. */
     20     T maximum(void);
     21     T extract_max(void);
     22     void increase_key(int, T);
     23     void insert_key(T);
     24 
     25     void print(void);
     26 private:
     27     vector<T> data;
     28     int heap_size;
     29 };
     30 
     31 template<typename T> Heap<T>::Heap(vector<T>& d) {
     32     data = d;
     33     build_max_heap();
     34 }
     35 
     36 template<typename T> Heap<T>::~Heap(void) {
     37     data.clear();
     38     heap_size = 0;
     39 }
     40 
     41 template<typename T> inline int Heap<T>::parent(int idx) {
     42     return (idx - 1) >> 1;
     43 }
     44 
     45 template<typename T> inline int Heap<T>::left(int idx) {
     46     return (idx << 1) + 1;
     47 }
     48 
     49 template<typename T> inline int Heap<T>::right(int idx) {
     50     return (idx << 1) + 2;
     51 }
     52 
     53 template<typename T> void Heap<T>::max_heapify(int idx) {
     54     int largest = idx;
     55     int l = left(idx);
     56     int r = right(idx);
     57     if (l < heap_size && data[l] > data[largest]) largest = l;
     58     if (r < heap_size && data[r] > data[largest]) largest = r;
     59     if (largest != idx) {
     60         swap(data[idx], data[largest]);
     61         max_heapify(largest);
     62     }
     63 }
     64 
     65 template<typename T> void Heap<T>::build_max_heap(void) {
     66     heap_size = data.size();
     67     for (int i = (heap_size >> 1) - 1; i >= 0; i--)
     68         max_heapify(i);
     69 }
     70 
     71 template<typename T> void Heap<T>::heap_sort(void) {
     72     int size = heap_size - 1;
     73     for (int i = size; i > 0; i--) {
     74         swap(data[i], data[0]);
     75         heap_size--;
     76         max_heapify(0);
     77     }
     78 }
     79 
     80 template<typename T> T Heap<T>::maximum(void) {
     81     return data[0];
     82 }
     83 
     84 template<typename T> T Heap<T>::extract_max(void) {
     85     if (data.empty()) throw runtime_error("Heap underflow!");
     86     int maximum = data[0];
     87     swap(data[0], data[heap_size - 1]);
     88     heap_size--;
     89     max_heapify(0);
     90     return maximum;
     91 }
     92 
     93 template<typename T> void Heap<T>::increase_key(int idx, T key) {
     94     if (key < data[idx]) {
     95         cerr << "New key is smaller!" << endl;
     96         return;
     97     }
     98     data[idx] = key;
     99     while (idx >= 0 && parent(idx) >= 0 && data[parent(idx)] < data[idx]) {
    100         swap(data[idx], data[parent(idx)]);
    101         idx = parent(idx);
    102     }
    103 }
    104 
    105 template<typename T> void Heap<T>::insert_key(T key) {
    106     data.insert(data.begin() + heap_size, key - 1);
    107     heap_size++;
    108     increase_key(heap_size - 1, key);
    109 }
    110 
    111 template<typename T> void Heap<T>::print(void) {
    112     printf("In heap: ");
    113     for (int i = 0; i < heap_size; i++)
    114         printf("%d ", data[i]);
    115     printf(", ");
    116     if (heap_size < (int)data.size()) {
    117         printf("Out of heap: ");
    118         for (int i = heap_size; i < (int)data.size(); i++)
    119             printf("%d ", data[i]);
    120     }
    121     printf("
    ");
    122 }
    123 
    124 void heap_test(void) {
    125     int num[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7};
    126     vector<int> nums(num, num + sizeof(num) / sizeof(int));
    127     // Construct a heap and print it
    128     Heap<int> heap(nums);
    129     heap.print();
    130     // Test maximum() and extract_max()
    131     printf("%d
    ", heap.maximum());
    132     printf("%d
    ", heap.extract_max());
    133     heap.print();
    134     // Test increase_key()
    135     heap.increase_key(3, 5);
    136     heap.print();
    137     // Test insert_key()
    138     heap.insert_key(20);
    139     heap.print();
    140     // Test heap_sort()
    141     heap.heap_sort();
    142     heap.print();
    143 }
    144 
    145 int main(void) {
    146     heap_test();
    147     system("pause");
    148     return 0;
    149 }

    If you run this code, the expected output is  like (I am testing it in Microsoft Visual Studio Professional 2012): 

    In heap: 16 14 10 8 7 9 3 2 4 1 ,
    16
    16
    In heap: 14 8 10 4 7 9 3 2 1 , Out of heap: 16
    In heap: 14 8 10 5 7 9 3 2 1 , Out of heap: 16
    In heap: 20 14 10 5 8 9 3 2 1 7 , Out of heap: 16
    In heap: 1 , Out of heap: 2 3 5 7 8 9 10 14 20 16

    Welcome for any question, comment and suggestion about the code!

  • 相关阅读:
    转载:关于sql server数据库表的主键问题
    centos FTP服务器的架设和配置
    OceanBase,淘宝开源的千亿级别分布式数据库系统。支持读写事务的线上服务
    在Fedora/Redhat/CentOS中防火墙设置
    转:SQL2008调试
    1.4.2 使用ActionScript类
    自写ajax经验总结
    搜索引擎中文分词技术
    优化数据库的方法及SQL语句优化的原则
    因为数据库正在使用,所以无法获得对数据库的独占访问权还原或删除数据库的解决方法
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4553239.html
Copyright © 2011-2022 走看看