zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Valid Parentheses

    This problem is a nice extension of the Valid Parentheses problem.

    There are several ways to solve it. The first idea is also to use a stack. However, in this time, we push the index instead of the character itself into the stack. What indexes do we push? Well, we push the indexes which seperate two valid parentheses.

    Let's see an example "()(()" first. In this example, it is clear that the first two are valid and the last two are also valid. Thus the third characters seperate two valid parentheses. We push its index 3 into the stack. Then the longest valid parentheses is either on the left side of it or on the right side of it. For strings that have more than one such indexes, like "())())()", we push all of them into the stack. Then we visit each valid parentheses separated by them and find the longest length. 

    How do we obtain these indexes? In fact, you can simply follow the way in Valid Parentheses. Each time a mismatch occurrs, the current index is what we need.

    You may run the following code on the above examples to get an understanding of how it works.

     1 class Solution {
     2 public:
     3     int longestValidParentheses (string s) {
     4         stack<int> indexes;
     5         for (int i = 0; i < (int)s.length(); i++) {
     6             if (s[i] == '(' || indexes.empty() || s[indexes.top()] != '(')
     7                 indexes.push(i);
     8             else indexes.pop();
     9         }
    10         if (indexes.empty()) return s.length();
    11         int maxlen = 0, left = 0, right = s.length() - 1;
    12         while (!indexes.empty()) {
    13             left = indexes.top();
    14             indexes.pop();
    15             maxlen = max(maxlen, right - left);
    16             right = left - 1;
    17         }
    18         maxlen = max(maxlen, left);
    19         return maxlen;
    20     }
    21 };

     Of course, this problem also has a Dynamic Programming solution. Let's define P[i] to be the length of the longest valid parentheses end at i. Then state equations are:

    1. P[i] = 0 if s[i] == '(' (No valid parentheses end with '(');
    2. P[i] = P[i - 2] + 2 if s[i] == ')' and s[i - 1] == '(', for example, s = '()()';
    3. P[i] = P[i - P[i - 1] - 2] + P[i - 1] + 2 if s[i] == ')' and s[i - 1] == ')' and s[i - P[i - 1] - 1] == '(', for example, s = '(())'.

    Putting these together, we have the following code.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')') {
     8                 if (s[i - 1] == '(')
     9                     dp[i] = 2 + (i - 2 >= 0 ? dp[i - 2] : 0);
    10                 else if (i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(')
    11                     dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
    12                 maxlen = max(maxlen, dp[i]);
    13             }
    14         }
    15         return maxlen;
    16     }
    17 };

     You may even notice that case 3 above has already includede case 2. So the code can be further shorten to below.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')' && i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(') {
     8                 dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
     9                 maxlen = max(maxlen, dp[i]);
    10             }
    11         }
    12         return maxlen;
    13     }
    14 };
  • 相关阅读:
    (Vue中)cehart在同一个dom上画图图切换时饼图有折线图的坐标系
    linux(centos7)修改服务器时间
    centos6 yum源不能使用
    Linux 使用 history 来减少重复命令的几个实用技巧。
    7个Shell 拿来就用脚本实例!
    keepalived的配置解析&安装与爬坑
    linux最全命令使用手册
    linux各种误删文件恢复方法(经典强推)
    位运算符
    SQL 书写、执行顺序
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4573582.html
Copyright © 2011-2022 走看看