zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Valid Parentheses

    This problem is a nice extension of the Valid Parentheses problem.

    There are several ways to solve it. The first idea is also to use a stack. However, in this time, we push the index instead of the character itself into the stack. What indexes do we push? Well, we push the indexes which seperate two valid parentheses.

    Let's see an example "()(()" first. In this example, it is clear that the first two are valid and the last two are also valid. Thus the third characters seperate two valid parentheses. We push its index 3 into the stack. Then the longest valid parentheses is either on the left side of it or on the right side of it. For strings that have more than one such indexes, like "())())()", we push all of them into the stack. Then we visit each valid parentheses separated by them and find the longest length. 

    How do we obtain these indexes? In fact, you can simply follow the way in Valid Parentheses. Each time a mismatch occurrs, the current index is what we need.

    You may run the following code on the above examples to get an understanding of how it works.

     1 class Solution {
     2 public:
     3     int longestValidParentheses (string s) {
     4         stack<int> indexes;
     5         for (int i = 0; i < (int)s.length(); i++) {
     6             if (s[i] == '(' || indexes.empty() || s[indexes.top()] != '(')
     7                 indexes.push(i);
     8             else indexes.pop();
     9         }
    10         if (indexes.empty()) return s.length();
    11         int maxlen = 0, left = 0, right = s.length() - 1;
    12         while (!indexes.empty()) {
    13             left = indexes.top();
    14             indexes.pop();
    15             maxlen = max(maxlen, right - left);
    16             right = left - 1;
    17         }
    18         maxlen = max(maxlen, left);
    19         return maxlen;
    20     }
    21 };

     Of course, this problem also has a Dynamic Programming solution. Let's define P[i] to be the length of the longest valid parentheses end at i. Then state equations are:

    1. P[i] = 0 if s[i] == '(' (No valid parentheses end with '(');
    2. P[i] = P[i - 2] + 2 if s[i] == ')' and s[i - 1] == '(', for example, s = '()()';
    3. P[i] = P[i - P[i - 1] - 2] + P[i - 1] + 2 if s[i] == ')' and s[i - 1] == ')' and s[i - P[i - 1] - 1] == '(', for example, s = '(())'.

    Putting these together, we have the following code.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')') {
     8                 if (s[i - 1] == '(')
     9                     dp[i] = 2 + (i - 2 >= 0 ? dp[i - 2] : 0);
    10                 else if (i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(')
    11                     dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
    12                 maxlen = max(maxlen, dp[i]);
    13             }
    14         }
    15         return maxlen;
    16     }
    17 };

     You may even notice that case 3 above has already includede case 2. So the code can be further shorten to below.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')' && i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(') {
     8                 dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
     9                 maxlen = max(maxlen, dp[i]);
    10             }
    11         }
    12         return maxlen;
    13     }
    14 };
  • 相关阅读:
    访问修饰符
    SqlServer 查运行进程
    SqlServer 作业计时执行存储过程,杀超时进程
    VS快捷键操作
    sql server 命令
    vs 加载 dev控件
    TreeList显示[+] [-] 线条样式
    佳能MG2580S清零
    Dev WaitDialog 使用
    导出.txt / .pdf / .xls
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4573582.html
Copyright © 2011-2022 走看看