zoukankan      html  css  js  c++  java
  • [LeetCode] Longest Valid Parentheses

    This problem is a nice extension of the Valid Parentheses problem.

    There are several ways to solve it. The first idea is also to use a stack. However, in this time, we push the index instead of the character itself into the stack. What indexes do we push? Well, we push the indexes which seperate two valid parentheses.

    Let's see an example "()(()" first. In this example, it is clear that the first two are valid and the last two are also valid. Thus the third characters seperate two valid parentheses. We push its index 3 into the stack. Then the longest valid parentheses is either on the left side of it or on the right side of it. For strings that have more than one such indexes, like "())())()", we push all of them into the stack. Then we visit each valid parentheses separated by them and find the longest length. 

    How do we obtain these indexes? In fact, you can simply follow the way in Valid Parentheses. Each time a mismatch occurrs, the current index is what we need.

    You may run the following code on the above examples to get an understanding of how it works.

     1 class Solution {
     2 public:
     3     int longestValidParentheses (string s) {
     4         stack<int> indexes;
     5         for (int i = 0; i < (int)s.length(); i++) {
     6             if (s[i] == '(' || indexes.empty() || s[indexes.top()] != '(')
     7                 indexes.push(i);
     8             else indexes.pop();
     9         }
    10         if (indexes.empty()) return s.length();
    11         int maxlen = 0, left = 0, right = s.length() - 1;
    12         while (!indexes.empty()) {
    13             left = indexes.top();
    14             indexes.pop();
    15             maxlen = max(maxlen, right - left);
    16             right = left - 1;
    17         }
    18         maxlen = max(maxlen, left);
    19         return maxlen;
    20     }
    21 };

     Of course, this problem also has a Dynamic Programming solution. Let's define P[i] to be the length of the longest valid parentheses end at i. Then state equations are:

    1. P[i] = 0 if s[i] == '(' (No valid parentheses end with '(');
    2. P[i] = P[i - 2] + 2 if s[i] == ')' and s[i - 1] == '(', for example, s = '()()';
    3. P[i] = P[i - P[i - 1] - 2] + P[i - 1] + 2 if s[i] == ')' and s[i - 1] == ')' and s[i - P[i - 1] - 1] == '(', for example, s = '(())'.

    Putting these together, we have the following code.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')') {
     8                 if (s[i - 1] == '(')
     9                     dp[i] = 2 + (i - 2 >= 0 ? dp[i - 2] : 0);
    10                 else if (i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(')
    11                     dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
    12                 maxlen = max(maxlen, dp[i]);
    13             }
    14         }
    15         return maxlen;
    16     }
    17 };

     You may even notice that case 3 above has already includede case 2. So the code can be further shorten to below.

     1 class Solution {
     2 public:
     3     int longestValidParentheses(string s) {
     4         vector<int> dp(s.length(), 0);
     5         int maxlen = 0;
     6         for (int i = 1; i < (int)s.length(); i++) {
     7             if (s[i] == ')' && i - dp[i - 1] - 1 >= 0 && s[i - dp[i - 1] - 1] == '(') {
     8                 dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] - 2 >= 0 ? dp[i - dp[i - 1] - 2] : 0);
     9                 maxlen = max(maxlen, dp[i]);
    10             }
    11         }
    12         return maxlen;
    13     }
    14 };
  • 相关阅读:
    IPAD3终于发布了!苹果在5年内还是很难被超越!
    今天更新了ubuntu11.10!
    折腾两日系统重装,对比ubuntu11.04 和windows 7旗舰版!(不定时更新添加新的体验)
    DELL XPS M1530安装MAC OS X Lion 10.7.3经验分享!
    ubuntu 11.04 指纹识别的安装!
    Dlink DIR615L 和水星(mercury) MW300R桥接方法!
    POJ 3522 Slim Span(kruskal 变型)
    POJ 3621 Sightseeing Cows(SPFA + 构造负环)
    POJ 2553 The Bottom of a Graph(Tarjan)
    POJ 2728 Desert King(最优比率生成树)
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4573582.html
Copyright © 2011-2022 走看看