zoukankan      html  css  js  c++  java
  • [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows:

    Given two sequences s and t, find the length of the longest sequence r, which is a subsequence of both s and t.

    Do you know the difference between substring and subequence? Well, substring is a contiguous series of characters while subsequence is not necessarily. For example, "abc" is a both a substring and a subseqeunce of "abcde" while "ade" is only a subsequence.

    This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest subsequence ends at i of s and j of t. Then the state equations are

    1. P[i][j] = max(P[i][j - 1], P[i - 1][j]) if s[i] != t[j];
    2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

    This algorithm gives the length of the longest common subsequence.  The code is as follows.

    1 int longestCommonSubsequence(string s, string t) {
    2     int m = s.length(), n = t.length();
    3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
    4     for (int i = 1; i <= m; i++)
    5         for (int j = 1; j <= n; j++)
    6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
    7     return dp[m][n];
    8 }

    Well, this code has both time and space complexity of O(m*n). Note that when we update dp[i][j], we only need dp[i - 1][j - 1], dp[i - 1][j] and dp[i][j - 1]. So we simply need to maintain two columns for them. The code is as follows.

     1 int longestCommonSubsequenceSpaceEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     int maxlen = 0;
     4     vector<int> pre(m, 0);
     5     vector<int> cur(m, 0);
     6     pre[0] = (s[0] == t[0]);
     7     maxlen = max(maxlen, pre[0]);
     8     for (int i = 1; i < m; i++) {
     9         if (s[i] == t[0] || pre[i - 1] == 1) pre[i] = 1;
    10         maxlen = max(maxlen, pre[i]);
    11     }
    12     for (int j = 1; j < n; j++) {
    13         if (s[0] == t[j] || pre[0] == 1) cur[0] = 1;
    14         maxlen = max(maxlen, cur[0]);
    15         for (int i = 1; i < m; i++) {
    16             if (s[i] == t[j]) cur[i] = pre[i - 1] + 1;
    17             else cur[i] = max(cur[i - 1], pre[i]);
    18             maxlen = max(maxlen, cur[i]);
    19         }
    20         swap(pre, cur);
    21         fill(cur.begin(), cur.end(), 0);
    22     }
    23     return maxlen;
    24 }

    Well, keeping two columns is just for retriving pre[i - 1], we can maintain a single variable for it and keep only one column. The code becomes more efficient and also shorter. However, you may need to run some examples to see how it achieves the things done by the two-column version.

     1 int longestCommonSubsequenceSpaceMoreEfficient(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<int> cur(m + 1, 0);
     4     for (int j = 1; j <= n; j++) {
     5         int pre = 0;
     6         for (int i = 1; i <= m; i++) {
     7             int temp = cur[i];
     8             cur[i] = (s[i - 1] == t[j - 1] ? pre + 1 : max(cur[i], cur[i - 1]));
     9             pre = temp;
    10         }
    11     }
    12     return cur[m];
    13 }

    Now you may try this problem on UVa Online Judge and get Accepted:)

    Of course, the above code only returns the length of the longest common subsequence. If you want to print the lcs itself, you need to visit the 2-d table from bottom-right to top-left. The detailed algorithm is clearly explained here. The code is as follows.

     1 int longestCommonSubsequence(string s, string t) {
     2     int m = s.length(), n = t.length();
     3     vector<vector<int> > dp(m + 1, vector<int> (n + 1, 0));
     4     for (int i = 1; i <= m; i++)
     5         for (int j = 1; j <= n; j++)
     6             dp[i][j] = (s[i - 1] == t[j - 1] ? dp[i - 1][j - 1] + 1 : max(dp[i - 1][j], dp[i][j - 1]));
     7     int len = dp[m][n];
     8     // Print out the longest common subsequence
     9     string lcs(len, ' ');
    10     for (int i = m, j = n, index = len - 1; i > 0 && j > 0;) {
    11         if (s[i - 1] == t[j - 1]) {
    12             lcs[index--] = s[i - 1];
    13             i--;
    14             j--;
    15         }
    16         else if (dp[i - 1][j] > dp[i][j - 1]) i--;
    17         else j--;
    18     }
    19     printf("%s
    ", lcs.c_str());
    20     return len;
    21 }
  • 相关阅读:
    低落
    栗子
    Wireless Password HDU
    考研路茫茫——单词情结 HDU
    DNA Sequence POJ
    HDU 6138 Fleet of the Eternal Throne 多校#8 AC自动机
    Rikka with Candies HDU
    Wavel Sequence HDU
    Counting Divisors HDU
    Codeforces Round #424 E. Cards Sorting 线段树/数据结构瞎搞/模拟
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4574334.html
Copyright © 2011-2022 走看看