zoukankan      html  css  js  c++  java
  • [LeetCode] Factorial Trailing Zeros

    Well, to compute the number of trailing zeros, we need to first think clear about what will generate a trailing 0? Obviously, a number multiplied by 10 will have a trailing 0 added to it. So we only need to find out how many 10's will appear in the expression of the factorial. Since 10 = 2 * 5and there are a bunch more 2's (each even number will contribute at least one 2), we only need to count the number of 5's.

    Now let's see what numbers will contribute a 5. Well, simply the multiples of 5, like 5, 10, 15, 20, 25, 35, .... So is the result simply n / 5? Well, not that easy. Notice that some numbers may contribute more than one 5, like 25 = 5 * 5. Well, what numbers will contribute more than one 5? Ok, you may notice that only multiples of the power of 5 will contribute more than one 5. For example, multiples of 25 will contribute at least two 5's.

    Well, how to count them all? If you try some examples, you may finally get the result, which is n / 5 + n / 25 + n / 125 + .... The idea behind this expression is: all the multiples of 5 will contribute one 5, the multiples of 25 will contribute one more 5 and the multiples of 125 will contribute another one more 5... and so on. Now, we can write down the following code, which is pretty short.

    1 class Solution {
    2 public:
    3     int trailingZeroes(int n) { 
    4         int count = 0;
    5         for (long long i = 5; n / i; i *= 5)
    6             count += n / i;
    7         return count;
    8     }
    9 };
  • 相关阅读:
    Linux的目录结构
    python爬虫系列序
    Ant批量处理jmeter脚本
    SoapUI测试webservice接口
    Jmeter分布式部署
    基础知识回顾:闭包
    Jmeter简单应用
    postman安装与使用
    python2.7编码与解码
    Markdown及MarkdownPad使用规则
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4605763.html
Copyright © 2011-2022 走看看