zoukankan      html  css  js  c++  java
  • linux --> 多线程编程

    多线程编程

    一、最基础,进程同时创建5个线程,各自调用同一个函数

    #include <iostream>
    #include <pthread.h> //多线程相关操作头文件,可移植众多平台
    
    using namespace std;
    
    #define NUM_THREADS 5 //线程数
    
    void* say_hello( void* args )
    {
        cout << "hello..." << endl;
    } //函数返回的是函数指针,便于后面作为参数
    
    int main()
    {
        pthread_t tids[NUM_THREADS]; //线程id
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            int ret = pthread_create( &tids[i], NULL, say_hello, NULL ); //参数:创建的线程id,线程参数,线程运行函数的起始地址,运行函数的参数
            if( ret != 0 ) //创建线程成功返回0
            {
                cout << "pthread_create error:error_code=" << ret << endl;
            }
        }
        pthread_exit( NULL ); //等待各个线程退出后,进程才结束,否则进程强制结束,线程处于未终止的状态
    }

    输入命令:

    g++ -o thread_test thread_test.cpp -lpthread

    两次测试结果:

    wq@wq-desktop$ ./thread_test
    hello...hello...
    hello...
    hello...
    
    hello...

    wq@wq-desktop$ ./thread_test
    hello...hello...hello...
    
    hello...
    hello...

    两次运行的结果会有差别,多线程的运行是混乱的,混乱就是正常?

    二、调用类中的函数,必须将该函数声明为静态函数

    因为静态成员函数属于静态全局区,线程可以共享这个区域,故可以各自调用。

    #include <iostream>
    #include <pthread.h>
    
    using namespace std;
    
    #define NUM_THREADS 5
    
    class Hello
    {
    public:
        static void* say_hello( void* args )
        {
            cout << "hello..." << endl;
        }
    };
    
    int main()
    {
        pthread_t tids[NUM_THREADS];
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            int ret = pthread_create( &tids[i], NULL, Hello::say_hello, NULL );
            if( ret != 0 )
            {
                cout << "pthread_create error:error_code" << ret << endl;
            }
        }
        pthread_exit( NULL );
    }

    测试结果:

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2
    hello...
    hello...
    hello...
    hello...
    hello...

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_2
    hello...hello...hello...
    
    
    hello...
    hello...

    三、如何在线程调用函数时传入参数呢?

    先看下面修改的代码,传入线程编号作为参数:

    #include <iostream>
    #include <pthread.h> //多线程相关操作头文件,可移植众多平台
    
    using namespace std;
    
    #define NUM_THREADS 5 //线程数
    
    void* say_hello( void* args )
    {
        int i = *( (int*)args ); //对传入的参数进行强制类型转换,由无类型指针转变为整形指针,再用*读取其指向到内容
        cout << "hello in " << i <<  endl;
    } //函数返回的是函数指针,便于后面作为参数
    
    int main()
    {
        pthread_t tids[NUM_THREADS]; //线程id
        cout << "hello in main.." << endl;
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&i ); //参数必须强转为void*类型,&i表示取i的地址,即指向i的指针
            cout << "Current pthread id = " << tids[i] << endl; //用tids数组打印创建的进程id信息
            if( ret != 0 ) //创建线程成功返回0
            {
                cout << "pthread_create error:error_code=" << ret << endl;
            }
        }
        pthread_exit( NULL ); //等待各个线程退出后,进程才结束,否则进程强制结束,线程处于未终止的状态
    }

    测试结果:

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_3
    hello in main..
    Current pthread id = 3078458224
    Current pthread id = 3070065520
    hello in hello in 2
    1
    Current pthread id = hello in 2
    3061672816
    Current pthread id = 3053280112
    hello in 4
    Current pthread id = hello in 4
    3044887408

    显然不是想要的结果,调用顺序很乱,这是为什么呢?

    修改代码如下:

    #include <iostream>
    #include <pthread.h> //多线程相关操作头文件,可移植众多平台
    
    using namespace std;
    
    #define NUM_THREADS 5 //线程数
    
    void* say_hello( void* args )
    {
        cout << "hello in thread " << *( (int *)args ) <<  endl;
    } //函数返回的是函数指针,便于后面作为参数
    
    int main()
    {
        pthread_t tids[NUM_THREADS]; //线程id
        int indexes[NUM_THREADS]; //用来保存i的值避免被修改
    
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            indexes[i] = i;
            int ret = pthread_create( &tids[i], NULL, say_hello, (void*)&(indexes[i]) );
            if( ret != 0 ) //创建线程成功返回0
            {
                cout << "pthread_create error:error_code=" << ret << endl;
            }
        }
        for( int i = 0; i < NUM_THREADS; ++i )
            pthread_join( tids[i], NULL ); //pthread_join用来等待一个线程的结束,是一个线程阻塞的函数
    }

    测试结果:

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_3
    hello in thread hello in thread hello in thread hello in thread hello in thread 30124

    还是有问题.,代码中如果没有pthread_join主线程会很快结束从而使整个进程结束,从而使创建的线程没有机会开始执行就结束了。加入pthread_join后,主线程会一直等待直到等待的线程结束自己才结束,使创建的线程有机会执行。

    四、属性参数的设置pthread_attr_t及join功能的使用

    线程的属性由结构体pthread_attr_t进行管理。

    typedef struct
    {
        int detachstate;      //  线程的分离状态
        int schedpolicy;      // 线程调度策略
        struct sched_param schedparam;  // 线程的调度参数
        int inheritsched;     //线程的继承性 
        int scope;            //线程的作用域 
        size_t guardsize;     //线程栈末尾的警戒缓冲区大小 
        int stackaddr_set; 
        void * stackaddr;     // 线程栈的位置 
        size_t stacksize;     // 线程栈的大小
    }pthread_attr_t;

    测试用例:

    #include <iostream>
    #include <pthread.h>
    
    using namespace std;
    
    #define NUM_THREADS 5
    
    void* say_hello( void* args )
    {
        cout << "hello in thread " << *(( int * )args) << endl;
        int status = 10 + *(( int * )args); //线程退出时添加退出的信息,status供主程序提取该线程的结束信息
        pthread_exit( ( void* )status ); 
    }
    
    int main()
    {
        pthread_t tids[NUM_THREADS];
        int indexes[NUM_THREADS];
        
        pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
        pthread_attr_init( &attr ); //初始化
        pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            indexes[i] = i;
            int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) );
            if( ret != 0 )
            {
              cout << "pthread_create error:error_code=" << ret << endl;
           }
        } 
        pthread_attr_destroy( &attr ); //释放内存 
        void *status;
        for( int i = 0; i < NUM_THREADS; ++i )
        {
          int ret = pthread_join( tids[i], &status ); //主程序join每个线程后取得每个线程的退出信息status
          if( ret != 0 )
          {
              cout << "pthread_join error:error_code=" << ret << endl;
          }
          else
          {
              cout << "pthread_join get status:" << (long)status << endl;
          }
        }
    }

    测试结果:

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_4
    hello in thread hello in thread hello in thread hello in thread 0hello in thread 321
    
    4
    pthread_join get status:10
    pthread_join get status:11
    pthread_join get status:12
    pthread_join get status:13
    pthread_join get status:14

    五、互斥锁的实现
    互斥锁是实现线程同步的一种机制,只要在临界区前后对资源加锁就能阻塞其他进程的访问。

    #include <iostream>
    #include <pthread.h>
    
    using namespace std;
    
    #define NUM_THREADS 5
    
    int sum = 0; //定义全局变量,让所有线程同时写,这样就需要锁机制
    pthread_mutex_t sum_mutex; //互斥锁
    
    void* say_hello( void* args )
    {
        cout << "hello in thread " << *(( int * )args) << endl;
        pthread_mutex_lock( &sum_mutex ); //先加锁,再修改sum的值,锁被占用就阻塞,直到拿到锁再修改sum;
        cout << "before sum is " << sum << " in thread " << *( ( int* )args ) << endl;
        sum += *( ( int* )args );
        cout << "after sum is " << sum << " in thread " << *( ( int* )args ) << endl;
        pthread_mutex_unlock( &sum_mutex ); //释放锁,供其他线程使用
        pthread_exit( 0 ); 
    }
    
    int main()
    {
        pthread_t tids[NUM_THREADS];
        int indexes[NUM_THREADS];
        
        pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
        pthread_attr_init( &attr ); //初始化
        pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //设置线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
        pthread_mutex_init( &sum_mutex, NULL ); //对锁进行初始化    
    
        for( int i = 0; i < NUM_THREADS; ++i )
        {
            indexes[i] = i;
            int ret = pthread_create( &tids[i], &attr, say_hello, ( void* )&( indexes[i] ) ); //5个进程同时去修改sum
            if( ret != 0 )
            {
            cout << "pthread_create error:error_code=" << ret << endl;
          }
        } 
        pthread_attr_destroy( &attr ); //释放内存 
        void *status;
        for( int i = 0; i < NUM_THREADS; ++i )
        {
          int ret = pthread_join( tids[i], &status ); //主程序join每个线程后取得每个线程的退出信息status
          if( ret != 0 )
          {
              cout << "pthread_join error:error_code=" << ret << endl;
          }
        }
        cout << "finally sum is " << sum << endl;
        pthread_mutex_destroy( &sum_mutex ); //注销锁
    }

    测试结果:

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_5
    hello in thread hello in thread hello in thread 410
    before sum is hello in thread 0 in thread 4
    after sum is 4 in thread 4hello in thread 
    
    2
    3
    before sum is 4 in thread 1
    after sum is 5 in thread 1
    before sum is 5 in thread 0
    after sum is 5 in thread 0
    before sum is 5 in thread 2
    after sum is 7 in thread 2
    before sum is 7 in thread 3
    after sum is 10 in thread 3
    finally sum is 10

    可知,sum的访问和修改顺序是正常的,这就达到了多线程的目的了,但是线程的运行顺序是混乱的,混乱就是正常?

    六、信号量的实现

    信号量是线程同步的另一种实现机制,信号量的操作有signal和wait,本例子采用条件信号变量pthread_cond_t tasks_cond;信号量的实现也要给予锁机制。

    #include <iostream>
    #include <pthread.h>
    #include <stdio.h>
    
    using namespace std;
    
    #define BOUNDARY 5
    
    int tasks = 10;
    pthread_mutex_t tasks_mutex; //互斥锁
    pthread_cond_t tasks_cond; //条件信号变量,处理两个线程间的条件关系,当task>5,hello2处理,反之hello1处理,直到task减为0
    
    void* say_hello2( void* args )
    {
        pthread_t pid = pthread_self(); //获取当前线程id
        cout << "[" << pid << "] hello in thread " <<  *( ( int* )args ) << endl;
        
        bool is_signaled = false; //sign
        while(1)
        {
        pthread_mutex_lock( &tasks_mutex ); //加锁
        if( tasks > BOUNDARY )
        {
            cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl;
             --tasks; //modify
        }
        else if( !is_signaled )
        {
            cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl;
            pthread_cond_signal( &tasks_cond ); //signal:向hello1发送信号,表明已经>5
            is_signaled = true; //表明信号已发送,退出此线程
        }
        pthread_mutex_unlock( &tasks_mutex ); //解锁
        if( tasks == 0 )
            break;
        }    
    }
    
    void* say_hello1( void* args )
    {
        pthread_t pid = pthread_self(); //获取当前线程id
        cout << "[" << pid << "] hello in thread " <<  *( ( int* )args ) << endl;
    
        while(1)
        {
            pthread_mutex_lock( &tasks_mutex ); //加锁
            if( tasks > BOUNDARY )
            {
              cout << "[" << pid << "] pthread_cond_signal in thread " << *( ( int* )args ) << endl;
              pthread_cond_wait( &tasks_cond, &tasks_mutex ); //wait:等待信号量生效,接收到信号,向hello2发出信号,跳出wait,执行后续 
            }
            else
            {
              cout << "[" << pid << "] take task: " << tasks << " in thread " << *( (int*)args ) << endl;
                --tasks;
          }
            pthread_mutex_unlock( &tasks_mutex ); //解锁
            if( tasks == 0 )
                break;
        } 
    }
    
    
    int main()
    {
        pthread_attr_t attr; //线程属性结构体,创建线程时加入的参数
        pthread_attr_init( &attr ); //初始化
        pthread_attr_setdetachstate( &attr, PTHREAD_CREATE_JOINABLE ); //是设置你想要指定线程属性参数,这个参数表明这个线程是可以join连接的,join功能表示主程序可以等线程结束后再去做某事,实现了主程序和线程同步功能
        pthread_cond_init( &tasks_cond, NULL ); //初始化条件信号量
        pthread_mutex_init( &tasks_mutex, NULL ); //初始化互斥量
        pthread_t tid1, tid2; //保存两个线程id
        int index1 = 1;
        int ret = pthread_create( &tid1, &attr, say_hello1, ( void* )&index1 );
        if( ret != 0 )
        {
            cout << "pthread_create error:error_code=" << ret << endl;
        }
        int index2 = 2;
        ret = pthread_create( &tid2, &attr, say_hello2, ( void* )&index2 );
        if( ret != 0 )
        {
            cout << "pthread_create error:error_code=" << ret << endl;
        }
        pthread_join( tid1, NULL ); //连接两个线程
        pthread_join( tid2, NULL ); 
    
        pthread_attr_destroy( &attr ); //释放内存 
        pthread_mutex_destroy( &tasks_mutex ); //注销锁
        pthread_cond_destroy( &tasks_cond ); //正常退出
    }

    测试结果:先在线程2中执行say_hello2,再跳转到线程1中执行say_hello1,直到tasks减到0为止。

    wq@wq-desktop:~/coding/muti_thread$ ./muti_thread_test_6
    [3069823856] hello in thread 2
    [3078216560] hello in thread 1[3069823856] take task: 10 in thread 2
    
    [3069823856] take task: 9 in thread 2
    [3069823856] take task: 8 in thread 2
    [3069823856] take task: 7 in thread 2
    [3069823856] take task: 6 in thread 2
    [3069823856] pthread_cond_signal in thread 2
    [3078216560] take task: 5 in thread 1
    [3078216560] take task: 4 in thread 1
    [3078216560] take task: 3 in thread 1
    [3078216560] take task: 2 in thread 1
    [3078216560] take task: 1 in thread 1

    到此,对多线程编程有了一个初步的了解,当然还有其他实现线程同步的机制,有待进一步探索。

    参考:http://blog.csdn.net/hitwengqi/article/details/8015646

  • 相关阅读:
    【逆向】《0day安全-软件漏洞分析技术》实验笔记2
    【逆向】《0day安全-软件漏洞分析技术》实验笔记1
    WorkWithPlus 13.15 升级!列表对象的优化效果显著!
    「版本更新」Genexus 16 Upgrade 9已发布!
    下一波数字化转型来临,我们需要选择更智能的开发工具
    太棒!企业和程序员都高兴!2-3个月打造全栈工程师
    GeneXus中如何使用聊天机器人
    「版本更新」GeneXus16 Upgrade 8的特性
    看完视频我终于明白:资深架构师角度的技术架构是这样!
    数据报告和分析:Dashboard
  • 原文地址:https://www.cnblogs.com/jeakeven/p/5331934.html
Copyright © 2011-2022 走看看