zoukankan      html  css  js  c++  java
  • Redis集群方案介绍

      由于Redis出众的性能,其在众多的移动互联网企业中得到广泛的应用。Redis在3.0版本前只支持单实例模式,虽然现在的服务器内存可以到100GB、200GB的规模,但是单实例模式限制了Redis没法满足业务的需求(例如新浪微博就曾经用Redis存储了超过1TB的数据)。Redis的开发者Antirez早在博客上就提出在Redis 3.0版本中加入集群的功能,但3.0版本等到2015年才发布正式版。各大企业在3.0版本还没发布前为了解决Redis的存储瓶颈,纷纷推出了各自的Redis集群方案。这些方案的核心思想是把数据分片(sharding)存储在多个Redis实例中,每一片就是一个Redis实例。

      下面介绍Redis的集群方案。

      1.客户端分片

      客户端分片是把分片的逻辑放在Redis客户端实现,通过Redis客户端预先定义好的路由规则,把对Key的访问转发到不同的Redis实例中,最后把返回结果汇集。这种方案的模式如图1所示。

      

    图1 客户端分片的模式

      客户端分片的好处是所有的逻辑都是可控的,不依赖于第三方分布式中间件。开发人员清楚怎么实现分片、路由的规则,不用担心踩坑。

      客户端分片方案有下面这些缺点。

    • 这是一种静态的分片方案,需要增加或者减少Redis实例的数量,需要手工调整分片的程序。

    • 可运维性差,集群的数据出了任何问题都需要运维人员和开发人员一起合作,减缓了解决问题的速度,增加了跨部门沟通的成本。

    • 在不同的客户端程序中,维护相同的分片逻辑成本巨大。例如,系统中有两套业务系统共用一套Redis集群,一套业务系统用Java实现,另一套业务系统用PHP实现。为了保证分片逻辑的一致性,在Java客户端中实现的分片逻辑也需要在PHP客户端实现一次。相同的逻辑在不同的系统中分别实现,这种设计本来就非常糟糕,而且需要耗费巨大的开发成本保证两套业务系统分片逻辑的一致性。

      2.Twemproxy

      Twemproxy是由Twitter开源的Redis代理,其基本原理是:Redis客户端把请求发送到Twemproxy,Twemproxy根据路由规则发送到正确的Redis实例,最后Twemproxy把结果汇集返回给客户端。

      Twemproxy通过引入一个代理层,将多个Redis实例进行统一管理,使Redis客户端只需要在Twemproxy上进行操作,而不需要关心后面有多少个Redis实例,从而实现了Redis集群。

      Twemproxy集群架构如图2所示。

      

    图2Twemproxy集群架构

      Twemproxy的优点如下。

    • 客户端像连接Redis实例一样连接Twemproxy,不需要改任何的代码逻辑。

    • 支持无效Redis实例的自动删除。

    • Twemproxy与Redis实例保持连接,减少了客户端与Redis实例的连接数。

      Twemproxy有如下不足。

    • 由于Redis客户端的每个请求都经过Twemproxy代理才能到达Redis服务器,这个过程中会产生性能损失。

    • 没有友好的监控管理后台界面,不利于运维监控。

    • 最大的问题是Twemproxy无法平滑地增加Redis实例。对于运维人员来说,当因为业务需要增加Redis实例时工作量非常大。

      Twemproxy作为最被广泛使用、最久经考验、稳定性最高的Redis代理,在业界被广泛使用。

      3.Codis

      Twemproxy不能平滑增加Redis实例的问题带来了很大的不便,于是豌豆荚自主研发了Codis,一个支持平滑增加Redis实例的Redis代理软件,其基于Go和C语言开发,并于2014年11月在GitHub上开源。

      Codis包含下面4个部分。

    • Codis Proxy:Redis客户端连接到Redis实例的代理,实现了Redis的协议,Redis客户端连接到Codis Proxy进行各种操作。Codis Proxy是无状态的,可以用Keepalived等负载均衡软件部署多个Codis Proxy实现高可用。

    • CodisRedis:Codis项目维护的Redis分支,添加了slot和原子的数据迁移命令。Codis上层的 Codis Proxy和Codisconfig只有与这个版本的Redis通信才能正常运行。

    • Codisconfig:Codis管理工具。可以执行添加删除CodisRedis节点、添加删除Codis Proxy、数据迁移等操作。另外,Codisconfig自带了HTTP server,里面集成了一个管理界面,方便运维人员观察Codis集群的状态和进行相关的操作,极大提高了运维的方便性,弥补了Twemproxy的缺点。

    • ZooKeeper:分布式的、开源的应用程序协调服务,是Hadoop和Hbase的重要组件,其为分布式应用提供一致性服务,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。Codis依赖于ZooKeeper存储数据路由表的信息和Codis Proxy节点的元信息。另外,Codisconfig发起的命令都会通过ZooKeeper同步到CodisProxy的节点。

      Codis的架构如图3所示。

      

    图3Codis的架构图

      在图3的Codis的架构图中,Codis引入了Redis Server Group,其通过指定一个主CodisRedis和一个或多个从CodisRedis,实现了Redis集群的高可用。当一个主CodisRedis挂掉时,Codis不会自动把一个从CodisRedis提升为主CodisRedis,这涉及数据的一致性问题(Redis本身的数据同步是采用主从异步复制,当数据在主CodisRedis写入成功时,从CodisRedis是否已读入这个数据是没法保证的),需要管理员在管理界面上手动把从CodisRedis提升为主CodisRedis。

      如果觉得麻烦,豌豆荚也提供了一个工具Codis-ha,这个工具会在检测到主CodisRedis挂掉的时候将其下线并提升一个从CodisRedis为主CodisRedis。

      Codis中采用预分片的形式,启动的时候就创建了1024个slot,1个slot相当于1个箱子,每个箱子有固定的编号,范围是1~1024。slot这个箱子用作存放Key,至于Key存放到哪个箱子,可以通过算法“crc32(key)%1024”获得一个数字,这个数字的范围一定是1~1024之间,Key就放到这个数字对应的slot。例如,如果某个Key通过算法“crc32(key)%1024”得到的数字是5,就放到编码为5的slot(箱子)。1个slot只能放1个Redis Server Group,不能把1个slot放到多个Redis Server Group中。1个Redis Server Group最少可以存放1个slot,最大可以存放1024个slot。因此,Codis中最多可以指定1024个Redis Server Group。

      Codis最大的优势在于支持平滑增加(减少)Redis Server Group(Redis实例),能安全、透明地迁移数据,这也是Codis 有别于Twemproxy等静态分布式 Redis 解决方案的地方。Codis增加了Redis Server Group后,就牵涉到slot的迁移问题。例如,系统有两个Redis Server Group,Redis Server Group和slot的对应关系如下。

      Redis Server Group

      slot

      1

      1~500

      2

      501~1024

      当增加了一个Redis Server Group,slot就要重新分配了。Codis分配slot有两种方法。

      第一种:通过Codis管理工具Codisconfig手动重新分配,指定每个Redis Server Group所对应的slot的范围,例如可以指定Redis Server Group和slot的新的对应关系如下。

      Redis Server Group

      slot

      1

      1~500

      2

      501~700

      3

      701~1024

      第二种:通过Codis管理工具Codisconfig的rebalance功能,会自动根据每个Redis Server Group的内存对slot进行迁移,以实现数据的均衡。

      4.Redis 3.0集群

      Redis 3.0集群采用了P2P的模式,完全去中心化。Redis把所有的Key分成了16384个slot,每个Redis实例负责其中一部分slot。集群中的所有信息(节点、端口、slot等),都通过节点之间定期的数据交换而更新。

      Redis客户端在任意一个Redis实例发出请求,如果所需数据不在该实例中,通过重定向命令引导客户端访问所需的实例。

      Redis 3.0集群的工作流程如图4所示。

      

    图4Redis 3.0集群的工作流程图

      如图4所示Redis集群内的机器定期交换数据,工作流程如下。

      (1) Redis客户端在Redis2实例上访问某个数据。

      (2) 在Redis2内发现这个数据是在Redis3这个实例中,给Redis客户端发送一个重定向的命令。

      (3) Redis客户端收到重定向命令后,访问Redis3实例获取所需的数据。

      Redis 3.0的集群方案有以下两个问题。

    • 一个Redis实例具备了“数据存储”和“路由重定向”,完全去中心化的设计。这带来的好处是部署非常简单,直接部署Redis就行,不像Codis有那么多的组件和依赖。但带来的问题是很难对业务进行无痛的升级,如果哪天Redis集群出了什么严重的Bug,就只能回滚整个Redis集群。

    • 对协议进行了较大的修改,对应的Redis客户端也需要升级。升级Redis客户端后谁能确保没有Bug?而且对于线上已经大规模运行的业务,升级代码中的Redis客户端也是一个很麻烦的事情。

      综合上面所述的两个问题,Redis 3.0集群在业界并没有被大规模使用。

      5.云服务器上的集群服务

      国内的云服务器提供商阿里云、UCloud等均推出了基于Redis的云存储服务。

      这个服务的特性如下。

      (1)动态扩容

      用户可以通过控制面板升级所需的Redis存储空间,扩容的过程中服务部不需要中断或停止,整个扩容过程对用户透明、无感知,这点是非常实用的,在前面介绍的方案中,解决Redis平滑扩容是个很烦琐的任务,现在按几下鼠标就能搞定,大大减少了运维的负担。

      (2)数据多备

      数据保存在一主一备两台机器中,其中一台机器宕机了,数据还在另外一台机器上有备份。

      (3)自动容灾

      主机宕机后系统能自动检测并切换到备机上,实现服务的高可用。

      (4)实惠

      很多情况下为了使Redis的性能更高,需要购买一台专门的服务器用于Redis的存储服务,但这样子CPU、内存等资源就浪费了,购买Redis云存储服务就很好地解决了这个问题。

      有了Redis云存储服务,能使App后台开发人员从烦琐运维中解放出来。App后台要搭建一个高可用、高性能的Redis服务,需要投入相当的运维成本和精力。如果使用云存储服务,就没必要投入这些成本和精力,可以让App后台开发人员更专注于业务。






  • 相关阅读:
    printcap
    browser-ua
    PHP 开发 APP 接口 学习笔记与总结
    Java实现 LeetCode 72 编辑距离
    Java实现 LeetCode 72 编辑距离
    Java实现 LeetCode 72 编辑距离
    Java实现 LeetCode 71 简化路径
    Java实现 LeetCode 71 简化路径
    Java实现 LeetCode 71 简化路径
    Java实现 LeetCode70 爬楼梯
  • 原文地址:https://www.cnblogs.com/jeffen/p/6114308.html
Copyright © 2011-2022 走看看