zoukankan      html  css  js  c++  java
  • codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

    For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

    The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

    Input

    First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

    Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

    Output

    Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

    The edges are numbered from 1 to m in order of their appearing in input.

    Sample test(s)
    input
    5 7
    1 2 3
    1 3 1
    1 4 5
    2 3 2
    2 5 3
    3 4 2
    4 5 4
    output
    9
    8
    11
    8
    8
    8
    9

    保证某条边e存在的MST就是普通Kruskal把e优先到了最前面。

    先求一遍MST,如果e不再MST上,是因为形成了环,把环上除了e的最大权边去掉就好了。

    (以前的LCA:用ST来RMQ,查询O(1)

    (向祖先结点倍增其实和ST差不多,查询O(logn),维护信息灵活

    (一开始想的是树剖,复杂度稍高

    #include<bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    
    const int N = 2e5+5, M = N*2;
    
    int pa[N], rak[N];
    int fd(int x){ return pa[x] ? pa[x] = fd(pa[x]) : x; }
    bool unite(int x,int y)
    {
        int a = fd(x), b = fd(y);
        if(a == b) return false;
        if(rak[a] < rak[b]){
            pa[a] = b;
        }
        else {
            pa[b] = a;
            if(rak[a] == rak[b]) rak[a]++;
        }
        return true;
    }
    
    int fro[N], to[N], we[N];
    
    int hd[N];
    int nx[M], ver[M], wei[M];
    int ec;
    
    void add_e(int u,int v,int w)
    {
        ver[++ec] = v;
        wei[ec] = w;
        nx[ec] = hd[u];
        hd[u] = ec;
    }
    
    int n, m;
    int *cmp_c;
    bool cmp_id(int i,int j){ return cmp_c[i] < cmp_c[j]; }
    
    int r[N];
    ll kruskal()
    {
        ll re = 0;
        int i,j;
        for(i = 1; i <= m; i++) r[i] = i;
        cmp_c = we;
        sort(r+1, r + 1 + m, cmp_id);
        //ec = 0;
        for(i = 1; i <= m; i++){
            j = r[i];
            if(unite(fro[j],to[j])){
                add_e(fro[j],to[j],we[j]);
                add_e(to[j],fro[j],we[j]);
                re += we[j];
                we[j] = 0;
            }
        }
        return re;
    }
    
    const int LOG = 19;
    
    int fa[N][LOG], mx[N][LOG];
    int dep[N];
    
    void dfs(int u,int f = 0,int fw = 0,int d = 0)
    {
        fa[u][0] = f;
        mx[u][0] = fw;
        dep[u] = d;
        for(int i = hd[u]; i; i = nx[i]) {
            int v = ver[i];
            if(v == f) continue;
            dfs(v,u,wei[i],d+1);
        }
    }
    
    int lg;
    
    int queryMx(int u,int v)
    {
        int re = 0, i;
        if(dep[u] < dep[v]) swap(u,v);
        for(i = lg; i >= 0; i--) if(dep[u] - (1<<i) >= dep[v]){
            re = max(re,mx[u][i]);
            u = fa[u][i];
        }
        if(u == v) return re;
        for(i = lg; i >= 0; i--) if(fa[u][i] != fa[v][i]){
            re = max(re,max(mx[u][i],mx[v][i]));
            u = fa[u][i];
            v = fa[v][i];
        }
        return max(re,max(mx[u][0],mx[v][0]));
    }
    
    //#define LOCAL
    int main()
    {
    #ifdef LOCAL
        freopen("in.txt","r",stdin);
    #endif
        //cout<<log2(N);
        scanf("%d%d",&n,&m);
        int i,j;
        for(i = 1; i <= m; i++){
            scanf("%d%d%d",fro+i,to+i,we+i);
        }
        ll mst = kruskal();
    
        dfs(1);
        lg = ceil(log2(n));
        for(j = 1; j <= lg; j++){
            for(i = 1; i <= n; i++) if(fa[i][j-1]){
                fa[i][j] = fa[fa[i][j-1]][j-1];
                mx[i][j] = max(mx[i][j-1],mx[fa[i][j-1]][j-1]);
            }
        }
        for(i = 1; i <= m; i++) {
            printf("%I64d
    ",we[i]?mst + we[i] - queryMx(fro[i],to[i]):mst);
        }
        return 0;
    }
  • 相关阅读:
    「转」xtrabackup新版详细说明
    微博MySQL优化之路--dockone微信群分享
    分享的好处
    DBA的技能图谱
    高效运维--数据库坐而论道活动
    MySQL的诡异同步问题-重复执行一条relay-log
    把信送给加西亚读后感
    一次由于字符集问题引发的MySQL主从同步不一致问题追查
    nginx解决浏览器跨域问题
    kubernetes之pod调度
  • 原文地址:https://www.cnblogs.com/jerryRey/p/5071528.html
Copyright © 2011-2022 走看看