zoukankan      html  css  js  c++  java
  • Hadoop vs Spark性能对比

    基于Spark-0.4和Hadoop-0.20.2

    1. Kmeans

    数据:自己产生的三维数据,分别围绕正方形的8个顶点

    {0, 0, 0}, {0, 10, 0}, {0, 0, 10}, {0, 10, 10},

    {10, 0, 0}, {10, 0, 10}, {10, 10, 0}, {10, 10, 10}

    Point number

    189,918,082 (1亿9千万个三维点)

    Capacity

    10GB

    HDFS Location

    /user/LijieXu/Kmeans/Square-10GB.txt

    clip_image002

    程序逻辑:

    读取HDFS上的block到内存,每个block转化为RDD,里面包含vector。

    然后对RDD进行map操作,抽取每个vector(point)对应的类号,输出(K,V)为(class,(Point,1)),组成新的RDD。

    然后再reduce之前,对每个新的RDD进行combine,在RDD内部算出每个class的中心和。使得每个RDD的输出只有最多K个KV对。

    最后进行reduce得到新的RDD(内容的Key是class,Value是中心和,再经过map后得到最后的中心。

    先上传到HDFS上,然后在Master上运行

    root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:9000/user/LijieXu/Kmeans/Square-10GB.txt 8 2.0

    迭代执行Kmeans算法。

    一共160个task。(160 * 64MB = 10GB)

    利用了32个CPU cores,18.9GB的内存。

    每个机器的内存消耗为4.5GB (共40GB)(本身points数据10GB*2,Map后中间数据(K, V) => (int, (vector, 1)) (大概10GB)

    clip_image004

    最后结果:

    0.505246194 s

    Final centers: Map(5 -> (13.997101228817169, 9.208875044622895, -2.494072457488311), 8 -> (-2.33522333047955, 9.128892414676326, 1.7923150585737604), 7 -> (8.658031587043952, 2.162306996983008, 17.670646829079146), 3 -> (11.530154433698268, 0.17834347219956842, 9.224352885937776), 4 -> (12.722903153986868, 8.812883284216143, 0.6564509961064319), 1 -> (6.458644369071984, 11.345681702383024, 7.041924994173552), 6 -> (12.887793408866614, -1.5189406469928937, 9.526393664105957), 2 -> (2.3345459304412164, 2.0173098597285533, 1.4772489989976143))

    50MB/s 10GB => 3.5min

    10MB/s 10GB => 15min

    在20GB的数据上测试

    Point number

    377,370,313 (3亿7千万个三维点)

    Capacity

    20GB

    HDFS Location

    /user/LijieXu/Kmeans/Square-20GB.txt

    运行测试命令:

    root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:9000/user/LijieXu/Kmeans/Square-20GB.txt 8 2.0 | tee mylogs/sqaure-20GB-kmeans.log

    得到聚类结果:

    Final centers: Map(5 -> (-0.47785701742763115, -1.5901830956323306, -0.18453046159033773), 8 -> (1.1073911553593858, 9.051671594514225, -0.44722211311446924), 7 -> (1.4960397239284795, 10.173412443492643, -1.7932911100570954), 3 -> (-1.4771114031182642, 9.046878176063172, -2.4747981387714444), 4 -> (-0.2796747780312184, 0.06910629855122015, 10.268115903887612), 1 -> (10.467618592186486, -1.168580362309453, -1.0462842137817263), 6 -> (0.7569895433952736, 0.8615441990490469, 9.552726007309518), 2 -> (10.807948500515304, -0.5368803187391366, 0.04258123037074164))

    基本就是8个中心点

    内存消耗:(每个节点大约5.8GB),共50GB左右。

    clip_image006

    内存分析:

    20GB原始数据,20GB的Map输出

    迭代次数

    时间

    1

    108 s

    2

    0.93 s

    12/06/05 11:11:08 INFO spark.CacheTracker: Looking for RDD partition 2:302

    12/06/05 11:11:08 INFO spark.CacheTracker: Found partition in cache!

    在20GB的数据上测试(迭代更多的次数)

    root@master:/opt/spark# ./run spark.examples.SparkKMeans master@master:5050 hdfs://master:900

    0/user/LijieXu/Kmeans/Square-20GB.txt 8 0.8

    Task数目:320

    时间:

    迭代次数

    时间

    1

    100.9 s

    2

    0.93 s

    3

    4.6 s

    4

    3.9 s

    5

    3.9 s

    6

    3.9 s

    迭代轮数对内存容量的影响:

    clip_image008

    基本没有什么影响,主要内存消耗:20GB的输入数据RDD,20GB的中间数据。

    Final centers: Map(5 -> (-4.728089224526789E-5, 3.17334874733142E-5, -2.0605806380414582E-4), 8 -> (1.1841686358289191E-4, 10.000062966002101, 9.999933240005394), 7 -> (9.999976672588097, 10.000199556926772, -2.0695123602840933E-4), 3 -> (-1.3506815993198176E-4, 9.999948270638338, 2.328148782609023E-5), 4 -> (3.2493629851483764E-4, -7.892413981250518E-5, 10.00002515017671), 1 -> (10.00004313126956, 7.431996896171192E-6, 7.590402882208648E-5), 6 -> (9.999982611661382, 10.000144597573051, 10.000037734639696), 2 -> (9.999958673426654, -1.1917651103354863E-4, 9.99990217533504))

    结果可视化

    clip_image010

    2. HdfsTest

    测试逻辑:

    package spark.examples

    import spark._

    object HdfsTest {

    def main(args: Array[String]) {

    val sc = new SparkContext(args(0), "HdfsTest")

    val file = sc.textFile(args(1))

    val mapped = file.map(s => s.length).cache()

    for (iter <- 1 to 10) {

    val start = System.currentTimeMillis()

    for (x <- mapped) { x + 2 }

    // println("Processing: " + x)

    val end = System.currentTimeMillis()

    println("Iteration " + iter + " took " + (end-start) + " ms")

    }

    }

    }

    首先去HDFS上读取一个文本文件保存在file

    再次计算file中每行的字符数,保存在内存RDD的mapped中

    然后读取mapped中的每一个字符数,将其加2,计算读取+相加的耗时

    只有map,没有reduce。

    测试10GB的Wiki

    实际测试的是RDD的读取性能。

    root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000:/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt

    测试结果:

    Iteration 1 took 12900 ms = 12s

    Iteration 2 took 388 ms

    Iteration 3 took 472 ms

    Iteration 4 took 490 ms

    Iteration 5 took 459 ms

    Iteration 6 took 492 ms

    Iteration 7 took 480 ms

    Iteration 8 took 501 ms

    Iteration 9 took 479 ms

    Iteration 10 took 432 ms

    每个node的内存消耗为2.7GB (共9.4GB * 3)

    clip_image012

    实际测试的是RDD的读取性能。

    root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt

    测试90GB的RandomText数据

    root@master:/opt/spark# ./run spark.examples.HdfsTest master@master:5050 hdfs://master:9000/user/LijieXu/RandomText90GB/RandomText90GB

    耗时:

    迭代次数

    耗时

    1

    111.905310882 s

    2

    4.681715228 s

    3

    4.469296148 s

    4

    4.441203887 s

    5

    1.999792125 s

    6

    2.151376037 s

    7

    1.889345699 s

    8

    1.847487668 s

    9

    1.827241743 s

    10

    1.747547323 s

    内存总消耗30GB左右。

    单个节点的资源消耗:

    clip_image014

    3. 测试WordCount

    写程序:

    import spark.SparkContext

    import SparkContext._

    object WordCount {

    def main(args: Array[String]) {

    if (args.length < 2) {

    System.err.println("Usage: wordcount <master> <jar>")

    System.exit(1)

    }

    val sp = new SparkContext(args(0), "wordcount", "/opt/spark", List(args(1)))

    val file = sp.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt");

    val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _)

    counts.saveAsTextFile("hdfs://master:9000/user/Output/WikiResult3")

    }

    }

    打包成mySpark.jar,上传到Master的/opt/spark/newProgram。

    运行程序:

    root@master:/opt/spark# ./run -cp newProgram/mySpark.jar WordCount master@master:5050 newProgram/mySpark.jar

    Mesos自动将jar拷贝到执行节点,然后执行。

    内存消耗:(10GB输入file + 10GB的flatMap + 15GB的Map中间结果(word,1))

    还有部分内存不知道分配到哪里了。

    耗时:50 sec(未经过排序)

    Hadoop WordCount耗时:120 sec到140 sec

    结果未排序

    单个节点:

    clip_image016

    Hadoop测试

    Kmeans

    运行Mahout里的Kmeans

    root@master:/opt/mahout-distribution-0.6# bin/mahout org.apache.mahout.clustering.syntheticcontrol.kmeans.Job -Dmapred.reduce.tasks=36 -i /user/LijieXu/Kmeans/Square-20GB.txt -o output -t1 3 -t2 1.5 -cd 0.8 -k 8 -x 6

    在运行(320个map,1个reduce)

    Canopy Driver running buildClusters over input: output/data

    时某个slave的资源消耗情况

    clip_image018

    clip_image020

    Completed Jobs

    Jobid

    Name

    Map Total

    Reduce Total

    Time

    job_201206050916_0029

    Input Driver running over input: /user/LijieXu/Kmeans/Square-10GB.txt

    160

    0

    1分2秒

    job_201206050916_0030

    KMeans Driver running runIteration over clustersIn: output/clusters-0/part-randomSeed

    160

    1

    1分6秒

    job_201206050916_0031

    KMeans Driver running runIteration over clustersIn: output/clusters-1

    160

    1

    1分7秒

    job_201206050916_0032

    KMeans Driver running runIteration over clustersIn: output/clusters-2

    160

    1

    1分7秒

    job_201206050916_0033

    KMeans Driver running runIteration over clustersIn: output/clusters-3

    160

    1

    1分6秒

    job_201206050916_0034

    KMeans Driver running runIteration over clustersIn: output/clusters-4

    160

    1

    1分6秒

    job_201206050916_0035

    KMeans Driver running runIteration over clustersIn: output/clusters-5

    160

    1

    1分5秒

    job_201206050916_0036

    KMeans Driver running clusterData over input: output/data

    160

    0

    55秒

    job_201206050916_0037

    Input Driver running over input: /user/LijieXu/Kmeans/Square-20GB.txt

    320

    0

    1分31秒

    job_201206050916_0038

    KMeans Driver running runIteration over clustersIn: output/clusters-0/part-randomSeed

    320

    36

    1分46秒

    job_201206050916_0039

    KMeans Driver running runIteration over clustersIn: output/clusters-1

    320

    36

    1分46秒

    job_201206050916_0040

    KMeans Driver running runIteration over clustersIn: output/clusters-2

    320

    36

    1分46秒

    job_201206050916_0041

    KMeans Driver running runIteration over clustersIn: output/clusters-3

    320

    36

    1分47秒

    job_201206050916_0042

    KMeans Driver running clusterData over input: output/data

    320

    0

    1分34秒

    运行多次10GB、20GB上的Kmeans,资源消耗

    clip_image022

    clip_image024

    Hadoop WordCount测试

    clip_image026

    clip_image028

    Spark交互式运行

    进入Master的/opt/spark

    运行

    MASTER=master@master:5050 ./spark-shell

    打开Mesos版本的spark

    在master:8080可以看到framework

    Active Frameworks

    ID

    User

    Name

    Running Tasks

    CPUs

    MEM

    Max Share

    Connected

    201206050924-0-0018

    root

    Spark shell

    0

    0

    0.0 MB

    0.00

    2012-06-06 21:12:56

    scala> val file = sc.textFile("hdfs://master:9000/user/LijieXu/Wikipedia/txt/enwiki-20110405.txt")

    scala> file.first

    scala> val words = file.map(_.split(' ')).filter(_.size < 100) //得到RDD[Array[String]]

    scala> words.cache

    scala> words.filter(_.contains("Beijing")).count

    12/06/06 22:12:33 INFO SparkContext: Job finished in 10.862765819 s

    res1: Long = 855

    scala> words.filter(_.contains("Beijing")).count

    12/06/06 22:12:52 INFO SparkContext: Job finished in 0.71051464 s

    res2: Long = 855

    scala> words.filter(_.contains("Shanghai")).count

    12/06/06 22:13:23 INFO SparkContext: Job finished in 0.667734427 s

    res3: Long = 614

    scala> words.filter(_.contains("Guangzhou")).count

    12/06/06 22:13:42 INFO SparkContext: Job finished in 0.800617719 s

    res4: Long = 134

    由于GC的问题,不能cache很大的数据集。

  • 相关阅读:
    flume配置和说明(转)
    ganlia安装配置文档
    (转)传统MySQL+ Memcached架构遇到的问题
    (转)QRCODE二维码介绍及常用控件推荐
    (转) VS2012程序打包部署详解
    (转)安装程序发布利器——InstallShield 2011 Limited Edition
    (转)linux下mysql的安装过程
    (转)反向代理服务器的工作原理
    (转)工业4.0消灭淘宝只需十年
    (转)TCP注册端口号大全
  • 原文地址:https://www.cnblogs.com/jerrylead/p/2636149.html
Copyright © 2011-2022 走看看