zoukankan      html  css  js  c++  java
  • python UI自动化截图对比

    目前有个想法,就是将UI截图与自动化截图进行对比。不一致的情况下提示错误

    截图对比方法有:

    https://www.cnblogs.com/dcb3688/p/4610660.html

    import cv2
    import numpy as np
    
    
    # 均值哈希算法
    def aHash(img):
        # 缩放为8*8
        img = cv2.resize(img, (8, 8))
        # 转换为灰度图
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # s为像素和初值为0,hash_str为hash值初值为''
        s = 0
        hash_str = ''
        # 遍历累加求像素和
        for i in range(8):
            for j in range(8):
                s = s + gray[i, j]
        # 求平均灰度
        avg = s / 64
        # 灰度大于平均值为1相反为0生成图片的hash值
        for i in range(8):
            for j in range(8):
                if gray[i, j] > avg:
                    hash_str = hash_str + '1'
                else:
                    hash_str = hash_str + '0'
        return hash_str
    
    
    # 差值感知算法
    def dHash(img):
        # 缩放8*8
        img = cv2.resize(img, (9, 8))
        # 转换灰度图
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        hash_str = ''
        # 每行前一个像素大于后一个像素为1,相反为0,生成哈希
        for i in range(8):
            for j in range(8):
                if gray[i, j] > gray[i, j + 1]:
                    hash_str = hash_str + '1'
                else:
                    hash_str = hash_str + '0'
        return hash_str
    
    
    # 感知哈希算法(pHash)
    def pHash(img):
        # 缩放32*32
        img = cv2.resize(img, (32, 32))  # , interpolation=cv2.INTER_CUBIC
    
        # 转换为灰度图
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # 将灰度图转为浮点型,再进行dct变换
        dct = cv2.dct(np.float32(gray))
        # opencv实现的掩码操作
        dct_roi = dct[0:8, 0:8]
    
        hash = []
        avreage = np.mean(dct_roi)
        for i in range(dct_roi.shape[0]):
            for j in range(dct_roi.shape[1]):
                if dct_roi[i, j] > avreage:
                    hash.append(1)
                else:
                    hash.append(0)
        return hash
    
    
    # 通过得到RGB每个通道的直方图来计算相似度
    def classify_hist_with_split(image1, image2, size=(256, 256)):
        # 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
        image1 = cv2.resize(image1, size)
        image2 = cv2.resize(image2, size)
        sub_image1 = cv2.split(image1)
        sub_image2 = cv2.split(image2)
        sub_data = 0
        for im1, im2 in zip(sub_image1, sub_image2):
            sub_data += calculate(im1, im2)
        sub_data = sub_data / 3
        return sub_data
    
    
    # 计算单通道的直方图的相似值
    def calculate(image1, image2):
        hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
        hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
        # 计算直方图的重合度
        degree = 0
        for i in range(len(hist1)):
            if hist1[i] != hist2[i]:
                degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
            else:
                degree = degree + 1
        degree = degree / len(hist1)
        return degree
    
    
    # Hash值对比
    def cmpHash(hash1, hash2):
        n = 0
        # hash长度不同则返回-1代表传参出错
        if len(hash1)!=len(hash2):
            return -1
        # 遍历判断
        for i in range(len(hash1)):
            # 不相等则n计数+1,n最终为相似度
            if hash1[i] != hash2[i]:
                n = n + 1
        return n
    
    
    img1 = cv2.imread('openpic/x1y2.png')  #  11--- 16 ----13 ---- 0.43
    img2 = cv2.imread('openpic/x2y4.png')
    
    img1 = cv2.imread('openpic/x3y5.png')  #  10----11 ----8------0.25
    img2 = cv2.imread('openpic/x9y1.png')
    
    img1 = cv2.imread('openpic/x1y2.png')  #  6------5 ----2--------0.84
    img2 = cv2.imread('openpic/x2y6.png')
    
    img1 = cv2.imread('openpic/t1.png')  #    14------19---10--------0.70
    img2 = cv2.imread('openpic/t2.png')
    
    img1 = cv2.imread('openpic/t1.png')  #    39------33---18--------0.58
    img2 = cv2.imread('openpic/t3.png')
    
    hash1 = aHash(img1)
    hash2 = aHash(img2)
    n = cmpHash(hash1, hash2)
    print('均值哈希算法相似度:', n)
    
    hash1 = dHash(img1)
    hash2 = dHash(img2)
    n = cmpHash(hash1, hash2)
    print('差值哈希算法相似度:', n)
    
    hash1 = pHash(img1)
    hash2 = pHash(img2)
    n = cmpHash(hash1, hash2)
    print('感知哈希算法相似度:', n)
    
    n = classify_hist_with_split(img1, img2)
    print('三直方图算法相似度:', n)
    

     由于截图对比要求较高,我选择差值哈希算法。

    具体截图代码如下

     对比代码

     结果:

  • 相关阅读:
    【学习小记】一般图最大匹配——带花树算法
    如何检查oracle的归档空间是否满了
    Linux 的计划任务
    转 oracle的热备份和冷备份
    SQLException: Io 异常: Connection refused ERR=12514 ERR=1153异常处理过程
    查看oracle数据库版本
    ORACLE默认实例设置--linux
    oracle查看用户属于哪个表空间
    oracle默认数据库实例
    oracle 查看用户所在的表空间
  • 原文地址:https://www.cnblogs.com/jescs/p/12888651.html
Copyright © 2011-2022 走看看