import torch from torch import nn import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt # 超参数 # Hyper Parameters # 训练整批数据多少次, 为了节约时间, 只训练一次 EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch BATCH_SIZE = 64 TIME_STEP = 28 # rnn time step / image height 时间步数 / 图片高度 INPUT_SIZE = 28 # rnn input size / image width 每步输入值 / 图片每行像素 LR = 0.01 # learning rate DOWNLOAD_MNIST = True # set to True if haven't download the data # Mnist 手写数字 # Mnist digital dataset train_data = dsets.MNIST( root='./mnist/', # 保存或者提取位置 train=True, # this is training data transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, # download it if you don't have it ) # plot one example print(train_data.train_data.size()) # (60000, 28, 28) print(train_data.train_labels.size()) # (60000) plt.imshow(train_data.train_data[0].numpy(), cmap='gray') plt.title('%i' % train_data.train_labels[0]) plt.show() # 数据加载 # Data Loader for easy mini-batch return in training 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28) train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # 测试数据 # convert test data into Variable, pick 2000 samples to speed up testing test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor()) test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1) test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array # 用一个 class 来建立 RNN 模型. # 这个 RNN 整体流程: # (input0, state0) -> LSTM -> (output0, state1); # (input1, state1) -> LSTM -> (output1, state2); # … # (inputN, stateN)-> LSTM -> (outputN, stateN+1); # outputN -> Linear -> prediction. # 通过LSTM分析每一时刻的值, 并且将这一时刻和前面时刻的理解合并在一起, 生成当前时刻对前面数据的理解或记忆. 传递这种理解给下一时刻分析. # 定义神经网络 class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns LSTM 效果要比 nn.RNN() 好多了 input_size=INPUT_SIZE, hidden_size=64, # rnn hidden unit num_layers=1, # number of rnn layer 有几层 RNN layers batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size) input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size) ) # 输出层 self.out = nn.Linear(64, 10) def forward(self, x): # x shape (batch, time_step, input_size) # r_out shape (batch, time_step, output_size) # h_n shape (n_layers, batch, hidden_size) # LSTM 有两个 hidden states, h_n 是分线, h_c 是主线 # h_c shape (n_layers, batch, hidden_size) r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state # 选取最后一个时间点的 r_out 输出 # choose r_out at the last time step out = self.out(r_out[:, -1, :]) # 这里 r_out[:, -1, :] 的值也是 h_n 的值 return out rnn = RNN() print(rnn) # 选择优化器 optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters # 选择损失函数 loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # 训练和测试 # 将图片数据看成一个时间上的连续数据, 每一行的像素点都是这个时刻的输入, # 读完整张图片就是从上而下的读完了每行的像素点. 然后我们就可以拿出 RNN 在最后一步的分析值判断图片是哪一类了. # training and testing for epoch in range(EPOCH): for step, (b_x, b_y) in enumerate(train_loader): # gives batch data b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size) output = rnn(b_x) # rnn output # 喂给 rnn net 训练数据 b_x, 输出预测值 loss = loss_func(output, b_y) # cross entropy loss # 计算两者的误差 optimizer.zero_grad() # clear gradients for this training step # 清空上一步的残余更新参数值 loss.backward() # backpropagation, compute gradients # 误差反向传播, 计算参数更新值 optimizer.step() # apply gradients # 将参数更新值施加到 rnn net 的 parameters 上 if step % 50 == 0: test_output = rnn(test_x) # (samples, time_step, input_size) pred_y = torch.max(test_output, 1)[1].data.numpy() accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) # print 10 predictions from test data test_output = rnn(test_x[:10].view(-1, 28, 28)) pred_y = torch.max(test_output, 1)[1].data.numpy() print(pred_y, 'prediction number') print(test_y[:10], 'real number')