zoukankan      html  css  js  c++  java
  • pytorch1.0实现RNN-LSTM for Classification

    import torch
    from torch import nn
    import torchvision.datasets as dsets
    import torchvision.transforms as transforms
    import matplotlib.pyplot as plt
    
    # 超参数
    # Hyper Parameters
    # 训练整批数据多少次, 为了节约时间, 只训练一次
    EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
    BATCH_SIZE = 64
    TIME_STEP = 28          # rnn time step / image height    时间步数 / 图片高度
    INPUT_SIZE = 28         # rnn input size / image width    每步输入值 / 图片每行像素
    LR = 0.01               # learning rate
    DOWNLOAD_MNIST = True   # set to True if haven't download the data
    
    # Mnist 手写数字
    # Mnist digital dataset
    train_data = dsets.MNIST(
        root='./mnist/',                    # 保存或者提取位置
        train=True,                         # this is training data
        transform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to
                                            # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,            # download it if you don't have it
    )
    
    # plot one example
    print(train_data.train_data.size())     # (60000, 28, 28)
    print(train_data.train_labels.size())   # (60000)
    plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    plt.title('%i' % train_data.train_labels[0])
    plt.show()
    
    # 数据加载
    # Data Loader for easy mini-batch return in training  批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
    train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    # 测试数据
    # convert test data into Variable, pick 2000 samples to speed up testing
    test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
    test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255.   # shape (2000, 28, 28) value in range(0,1)
    test_y = test_data.test_labels.numpy()[:2000]    # covert to numpy array
    
    # 用一个 class 来建立 RNN 模型.
    # 这个 RNN 整体流程:
    # (input0, state0) -> LSTM -> (output0, state1);
    # (input1, state1) -> LSTM -> (output1, state2);
    #
    # (inputN, stateN)-> LSTM -> (outputN, stateN+1);
    # outputN -> Linear -> prediction.
    # 通过LSTM分析每一时刻的值, 并且将这一时刻和前面时刻的理解合并在一起, 生成当前时刻对前面数据的理解或记忆. 传递这种理解给下一时刻分析.
    # 定义神经网络
    class RNN(nn.Module):
        def __init__(self):
            super(RNN, self).__init__()
    
            self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learns  LSTM 效果要比 nn.RNN() 好多了
                input_size=INPUT_SIZE,
                hidden_size=64,         # rnn hidden unit
                num_layers=1,           # number of rnn layer  有几层 RNN layers
                batch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)   input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
            )
            # 输出层
            self.out = nn.Linear(64, 10)
    
        def forward(self, x):
            # x shape (batch, time_step, input_size)
            # r_out shape (batch, time_step, output_size)
            # h_n shape (n_layers, batch, hidden_size)  # LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
            # h_c shape (n_layers, batch, hidden_size)
            r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state
    
            # 选取最后一个时间点的 r_out 输出
            # choose r_out at the last time step
            out = self.out(r_out[:, -1, :]) # 这里 r_out[:, -1, :] 的值也是 h_n 的值
            return out
    
    rnn = RNN()
    print(rnn)
    # 选择优化器
    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all cnn parameters
    # 选择损失函数
    loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted
    
    # 训练和测试
    # 将图片数据看成一个时间上的连续数据, 每一行的像素点都是这个时刻的输入,
    # 读完整张图片就是从上而下的读完了每行的像素点. 然后我们就可以拿出 RNN 在最后一步的分析值判断图片是哪一类了.
    # training and testing
    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):    # gives batch data
            b_x = b_x.view(-1, 28, 28)                      # reshape x to (batch, time_step, input_size)
    
            output = rnn(b_x)                               # rnn output   # 喂给 rnn net 训练数据 b_x, 输出预测值
            loss = loss_func(output, b_y)                   # cross entropy loss  # 计算两者的误差
            optimizer.zero_grad()                           # clear gradients for this training step  # 清空上一步的残余更新参数值
            loss.backward()                                 # backpropagation, compute gradients      # 误差反向传播, 计算参数更新值
            optimizer.step()                                # apply gradients   # 将参数更新值施加到 rnn net 的 parameters 上
    
            if step % 50 == 0:
                test_output = rnn(test_x)                   # (samples, time_step, input_size)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
    
    # print 10 predictions from test data
    test_output = rnn(test_x[:10].view(-1, 28, 28))
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10], 'real number')
  • 相关阅读:
    codeforces 724G
    P4151 [WC2011]最大XOR和路径 线性基
    2018-2019 ACM-ICPC, Asia Seoul Regional Contest K TV Show Game 2-sat
    codeforces 1198E Rectangle Painting 2 最小点覆盖
    codeforces847J Students Initiation 网络流
    codeforces863F Almost Permutation 费用流
    codeforces1213F Unstable String Sort 思维
    codeforces1156D 0-1-Tree 并查集
    codeforces1156D 0-1-Tree 换根dp
    错误集合
  • 原文地址:https://www.cnblogs.com/jeshy/p/11364279.html
Copyright © 2011-2022 走看看